Alfred Arnold, Stefan Hilse, Stephan Kanthak, Oliver Sellke,
Vittorio De Tomasi

Macro Assembler AS V1.42

User’s Manual

Edition March 2024

IBM, PPC}05Gz, OS/2, and PowerPC are registered trademarks of IBM
Corporation.

Intel, MCS-48, MCS-51, MCS-251, MCS-96, MCS-196 und MCS-296 are

registered trademarks of Intel Corp. .

Motorola and ColdFire are registered trademarks of Motorola Inc. .
MagniV is a registered trademark of Freescale Semiconductor.
PicoBlaze is a registered trademark of Xilinx Inc.

UNIX is a registered trademark of the The Open Group.

Linuz is a registered trademark of Linus Thorvalds.

Microsoft, Windows, and MS-DOS are registered trademarks of Microsoft
Corporation.

All other trademarks not explicitly mentioned in this section and used in this
manual are properties of their respective owners.

This document has been processed with the LaTeX typesetting system, using
the Linux operating system.

Contents

(1__Introductionl 11
(1.1 ~License Agreement| 11
(1.2 General Capabilities of the Assembler{. 13
(1.3 Supported Plattorms| 20

2 Assembler Usage| 21
2.1 Hardware Requirements| 21
2.2 Deliveryl 22
2.3 Installationl L 26
[2.4 Start-Up Command, Parameters|. 29
[2.5 Format of the Input Files|. 40
[2.6 Format of the Listing| 42
[2.7 Symbol Conventions|, 45
[2.8 Temporary Symbols|.o 47
2.9 Named Temporary Symbols| 48

[2.9.1 Nameless Temporary Symbols| 49
[2.9.2 Composed Temporary Symbols| 50
[2.10 Formula Expressions| 51
[2.10.1 Integer Constants| 51
[2.10.2 Floating Point Constants{. 54
[2.10.3 String Constants] 54
[2.10.4 String to Integer Conversion and Character Constants|. 55
2.10.5 Evaluation|.o 56
[2.10.6 Operators| o7
2.10.7 Functionso 57
2.11 Forward References and Other Disastersl 62
[2.12 Register Symbols| o000 65
2.13 Share Filelo o 66

4 CONTENTS

32.5 BIS, FIS and FPLT] o oo 114

CONTENTS 5

......................... 124
3290 CKPT . . o o e 135
3297 EMULATED] . . . o o oo oo 135
3222 BRANCHEXT] oo 136
....................... 136
B.224 EXPECT and ENDEXPECT] 137
3.3 Data Definitions. 137
331 DC[Size] 138
3.3.2 DS[Size]|. 139
[3.3.3 BLKB, BLKW,BLKL,BLKD|. 139
3.3. DB, DD DQ,and DI} . 0 0 000000000 140
3.3.5 2. 3, A 142
B36 DS, DSS 142
B37 DBYTor FCDl 143
B38 BYTE 143
B339 DCS . o oo 143
3.3.10 ADRor FDBl 143
............................ 144
............................ 144
B33 WORDI oo 144
B3I DWIO oo oo 144
B3I5 ACON . . . oo 144
........................... 145
[3.3.17 SINGLE, DOUBLE, and EXTENDED| 145

3.3.20 , ,and T'FLOAT| 146
[3.3.21 Qxxand LQxx|, 146

CONTENTS

3.3.32 RESI . . . oo o 149

3.4.9 ATON . o 164
3.5 Structured 165
(3.5.1 Definition|o 166
3.5.2 Usagel 167
[3.5.3 Nested Structuresl 168
.54 Unions 168
[3.5.5 Nameless Structured 169
[3.5.6 Structures and Sectionsl. 169
[3.5.7 Structures and Macros| 169
[3.6 Conditional Assembly|. 170
3.6.1 1F /ELSEIF /ENDIF|, 170
3.6.2 SWITCH / CASE / ELSECASE / ENDCASEH|. 172
[3.7 Listing Controll, 173
371 PAGE, PAGESIZE 173
........................ 174
3. 7.3 MACEXP DET and MACEXP _OVRI
[3.8 Local Symbols|. o 179

[3.8.1 Basic Definition (SECTION/ENDSECTION)[. 180

CONTENTS 7

[3.8.2 Nesting and Scope Ruleg| 182
B83 PUBLIC and GLOBAT] 184
3.84 FORWARDI 186
[3.8.5 Performance Aspects| 187
B.9 Miscellaneousl 187
3.9.1 SHAREDI 187
BO2 INCLUDEl o oo 188
BI93 BINCLUDE 188

3.9 , , and FATAL|. 189

3.95 READI 190
....................... 191
3.9.7 RELAXEDI 192
B.O8 COMPMODE i 192
3.99 ENDI 193

[4 Processor-specific Hints| 195
4.1 osLIl . .. 195
4.2 PowerPQl. 197
E3IBMPATM . . . o oo 197
44 DSPHoxxx] 199
4.5 H8/300|. 200
4.6 H8/500). 200
4.7 SH7000/7600/7700] 201
4.8 HMCS4000 204
4.9 HI6l 206
410 OLMS-400 207
411 OLMS-500 o o oo 208
4.12 MELPS-45000 208
4.13 6002UNDOCH 209
4.14 MELPS-7401 212
{4.15 MELPS-7700/65816|. 213
MI6EDMIA . . . o 216
HITCP3E . . . 217
[4.18 4004/4040) 220
4.19 MCS-48 220
M20 MCSHI - o o oo e 221
421 MCS-2011. o o 222

CONTENTS

........................... 225
4.24 8086. V33l 227
4.25 8X30xl 230
4260 XAl 231
427 AVRI ... 232
428 Z8OUNDOC 233
[4.29 GB_Z80 resp. LR35902] 234
4.30 73801 . ..o 235
[4.31 78, Super8, and eZ8| L 236
4.32 780001 237

4.32.1 Conditions|. 238

............................ 239

[4.32.3 Indirect Addressing 239

[4.32.4 Direct versus Immediate Addressing|. 239
.33 TLCS-900(L)|« o oo 239
M3 TLCSOU . - o oo e e 244
4.35 TLOS-8701 244
B36 TLCSAT o e e 245
37T TLCS9000 oo 245
.............................. 246
4,59 20xXXXI e 247
HATVOCTON . . . o o o oo e 247
.41 PIC16CHx/16C8x] 250
A2 PICTITCA.o 251
(.43 SX20/28) 251
HALSTO . . o o 251
EAS ST . o o 253
4.46 ST 253
447 63041 . ..o e 254
............................. 254
............................ 255
.50 TMS320C3x/C4x| oo 255
4.51 TMS990Q1 256
4.52 TMST70Cxxl o 257
4,53 TMS370xxx] o 258
.54 MSP430(X)| 258
4,505 TMST000 259

4.06 COPS oo 260

CONTENTS 9

4.57 SC/MP| 260
458 SCI4AXxx] 261
459 NS32xxxl 261
[4.60 uPD78(C)Ixl. 263
4.61 THOKON 271
4.62 T8ROI 272
[4.63 7T8K2/7T8K3/7T8K4| 273
[4.64 uPD7T72xl. 273
H65 F2MCI6L oo e 274
4.66 MNT6Ixl 274
67 CDPIROX o o e 274
4.08 KENBAKI 275
[4.69 HP Nanoprocessor| 277
4.70 IMOIXQ o 277
b _File Formats| 279
b.l CodeFiled 279
(5.2 Debug Files| o 283
[6 Utility Programs| 287
BI_PLISTI . . . o o 288
6.2 BINDI 289
6.3 P2HEXI 290
6.4 P2BINl 295
0.0 AS2MOSGI. 296
(A Error Messages of AS| 299
(B 1/O Error Messages| 369
[C Frequently Asked Questions| 373
[D Pseudo-Instructions and Integer Syntaxl| 377
[E2 Predefined Symbols| 403
(' Shipped Include Files| 407
[F1_BITEFUNCSINCG e s 407

2 CTYPEINCE o000 oo 408

10 CONTENTS

|G Acknowledgments| 411
[H Changes since Version 1.3 415
I__Hints for the AS Source Codel 431
[[.1 Language Preliminariesf. 431
[[.2 Capsuling System dependencies| 432
[[.3 System-Independent Files| 433
([.3.1 Modules Used by AS| 433

(L3.2 Additional Modules for the Toolsl 438

[[.4 Modules Needed During the Build of AS| 439
[[.b Generation of Message Files| 441
Lo.1 Format of the Source Files| 441

L6 Creation of Documentationl. 443
(L7 Test Switel 445
[[.8 Adding a New Target Processor| 445

[[.9 Localization to a New Languagel. 452

Chapter 1

Introduction

This instruction is meant for programmers who are already very familiar with
Assembler and who like to know how to work with AS. It is rather a reference
than a user’s manual and so it neither tries to explain the ”language assem-
bler” nor the processors. I have listed further literature in the bibliography
which was substantial in the implementation of the different code generators.
There is no book I know where you can learn Assembler from the start, so I
generally learned this by ”trial and error”.

1.1 License Agreement

Before we can go ”in medias res”, first of all the inevitable prologue:

As in the present version is licensed according to the Gnu General Public

License (GPL); the details of the GPL may be read in the file COPYING
bundled with this distribution. If you did not get it with AS, complain to
the one you got AS from!

Shortly said, the GPL covers the following points:

e Programs based upon AS must also be licensed according to the GPL;

e distribution is explicitly allowed;

11

12 CHAPTER 1. INTRODUCTION

e explicit disclaiming of all warranties for damages resulting from usage
of this program.

...however, I really urge you to read the file COPYING for the details!

To accelerate the error diagnose and correction, please add the following
details to the bug report:

e Operating system (DOS, Windows, Linux) and its version
e Version of AS used, resp. dates of the EXE-files
e [f you compiled the assembler yourself, the compiler used and its version

e If possible, the source file that triggered the bug
You can contact me as follows:

e by Surface Mail:

Alfred Arnold
Hirschgraben 29
D-52062 Aachen

Germany

e by E-Mail: alfred@ccac.rwth-aachen.de

If someone likes to meet me personally to ask questions and lives near Aachen
(= Aix-la-Chapelle), you will be able to meet me there. You can do this most
probably on thursdays from 8pm to 9pm at the RWTH Aachen Computer
Club (Elisabethstrasse 16, first floor, corridor on the right).

Please don’t call me by phone. First, complex relations are extremely hard
to discuss at phone. Secondly, the telephone companies are already rich
enough...

The latest version of AS (DPMI, Win32, C) is available from the following
Server:

1.2. GENERAL CAPABILITIES OF THE ASSEMBLER 13

http://john.ccac.rwth-aachen.de:8000/as
or shortly
http://www.alfsembler.de

Whoever has no access to an FTP-Server can ask me to send the assem-
bler by mail. Only requests containing a blank CD-R and a self-addressed,
(correctly) stamped envelope will be answered. Don’t send any money!

Now, after this inevitable introduction we can turn to the actual documen-
tation:

1.2 General Capabilities of the Assembler

In contrast to ordinary assemblers, AS offers the possibility to generate code
for totally different processors. At the moment, the following processor fam-
ilies have been implemented:

e Motorola 68000..68040,, 683xx, and Coldfire incl. coprocessor and
MMU

e Motorola ColdFire

e Motorola DSP5600x,DSP56300

e Motorola M-Core

e Motorola/IBM MPC601/MPC505/PPC403/MPC821
e [IBM PALM

e Motorola 6800, 6801, 68(HC)11(K4) and Hitachi 6301
e Motorola/Freescale 6805, 68HC(S)08

e Motorola 6809 / Hitachi 6309

e Motorola/Freescale 68HC12(X) including XGATE

e Freescale/NXP S127 ("MagniV”)

14

CHAPTER 1. INTRODUCTION

Motorola 68HC16
Freescale 68RS08

Konami 052001

Hitachi H8/300(H)

Hitachi H8/500

Hitachi SH7000/7600/7700
Hitachi HMCS400

Hitachi H16

Rockwell 6502, 65(S)C02, Commodore 65CE02, WDC W65C02S,
Rockwell 65C19, and Hudson HuC6280

Rockwell PPS-4

CMD 65816

Mitsubishi MELPS-740

Mitsubishi MELPS-7700

Mitsubishi MELPS-4500

Mitsubishi M16

Mitsubishi M16C

DEC PDP-11

Western Digital WD16

Intel 4004 /4040

Intel MCS-48/41, including Siemens SAB80C382, and the OKI variants
Intel MCS-51/251, Dallas DS80C390
Intel MCS-96/196(Nx) /296

1.2. GENERAL CAPABILITIES OF THE ASSEMBLER

e Intel 8080/8085

e Intel 1960

e Signetics 8X30x

e Signetics 2650

e Philips XA

e Atmel (Mega-)AVR

e AMD 29K

e Siemens 80C166/167

e Zilog Z80 (including undocumented instructions), Z180, Z380
e Sharp LR35902 (,,Gameboy Z80")
e Sharp SC61860

e Sharp SC62015

e Zilog Z8, Super8, Z8 Encore

o Zilog 78000

e Xilinx KCPSM/KCPSM3 (’'PicoBlaze’)
e LatticeMico8

e Toshiba TLCS-900(L)

e Toshiba TLCS-90

e Toshiba TLCS-870(/C)

e Toshiba TLCS-47

e Toshiba TLCS-9000

e Toshiba TC9331

e Microchip PIC16C54..16C57

15

CHAPTER 1. INTRODUCTION

Microchip PIC16C84/PIC16C64

Microchip PIC17C42

Parallax SX20/28

SGS M380/GI LP8000

SGS-Thomson ST6

SGS-Thomson ST7/STMS8

SGS-Thomson ST9

SGS-Thomson 6804

Texas Instruments TMS32010/32015

Texas Instruments TMS3202x

Texas Instruments TMS320C3x/TMS320C4x
Texas Instruments TMS320C20x/TMS320C5x
Texas Instruments TMS320C54x

Texas Instruments TMS320C6x

Texas Instruments TMS99xx /99xxx

Texas Instruments TMS7000

Texas Instruments TMS1000

Texas Instruments TMS370xxx

Texas Instruments MSP430(X)

National Semiconductor IMP-16

National Semiconductor IPC-16 ("PACE’), INS8900
National Semiconductor SC/MP

National Semiconductor INS807x

1.2. GENERAL CAPABILITIES OF THE ASSEMBLER

National Semiconductor COP4
National Semiconductor COP8
National Semiconductor SC144xx
National Semiconductor NS32xxx
Olympia CP-3F (resp. SGS M380, GI LP8000)
Fairchild ACE

Fairchild F8

NEC pPD78(C)0x/uPD 78(C)1x
NEC puPD75xx

NEC pPD 75xxx (alias 75K0)
NEC 78K0

NEC 78K2

NEC 78K3

NEC 78K4

NEC pPD7720/7725

NEC puPD77230

NEC V60

Fujitsu F2MCS8L

Fujitsu F2MC16L

OKI OLMS-40

OKI OLMS-50

Panafacom MN1610/MN1613
Renesas RX

17

18 CHAPTER 1. INTRODUCTION

e Padauk PMS/PMC/PFSxxx

e Symbios Logic SYM53C8xx (yes, they are programmable!)
o Intersil CDP1802/1804/1805(A)

e Intersil IM6100/6120

e XMOS XS1

e MIL STD 1750

¢ KENBAK-1

e GI CP-1600

e HP Nano Processor
under work / planned / in consideration :

e ARM

Analog Devices ADSP21xx
SGS-Thomson ST20

Texas Instruments TMS320C8x

Unloved, but now, however, present :
e Intel 80x86, 80186, Nec V20..V55 incl. coprocessor 8087

The switch to a different code generator is allowed even within one file, and
as often as one wants!

The reason for this flexibility is that AS has a history, which may also be
recognized by looking at the version number. AS was created as an extension
of a macro assembler for the 68000 family. On special request, I extended the
original assembler so that it was able to translate 8051 mnemonics. On this
way (decline ?!) from the 68000 to 8051, some other processors were created
as by-products. All others were added over time due to user requests. So

1.2. GENERAL CAPABILITIES OF THE ASSEMBLER 19

At least for the processor-independent core of AS, one may assume that it
is well-tested and free of obvious bugs. However, I often do not have the
chance to test a new code generator in practice (due to lack of appropriate
hardware), so surprises are not impossible when working with new features.
You see, the things stated in section have a reason...

This flexibility implies a somewhat exotic code format, therefore I added
some tools to work with it. Their description can be found in chapter [6]

AS is a macro assembler, which means that the programmer has the possibil-
ity to define new ”commands” by means of macros. Additionally it masters
conditional assembling. Labels inside macros are automatically processed as
being local.

For the assembler, symbols may have either integer, string or floating point
values. These will be stored - like interim values in formulas - with a width
of 32 bits for integer values, 80 or 64 bits for floating point values, and 255
characters for strings. For a couple of micro controllers, there is the possi-
bility to classify symbols by segmentation. So the assembler has a (limited)
possibility to recognize accesses to wrong address spaces.

The assembler does not know explicit limits in the nesting depth of include
files or macros; a limit is only given by the program stack restricting the
recursion depth. Nor is there a limit for the symbol length, which is only
restricted by the maximum line length.

From version 1.38 on, AS is a multipass-assembler. This pompous term
means no more than the fact that the number of passes through the source
code need not be exactly two. If the source code does not contain any
forward references, AS needs only one pass. In case AS recognizes in the
second pass that it must use a shorter or longer instruction coding, it needs
a third (fourth, fifth...) pass to process all symbol references correctly. There
is nothing more behind the term "multipass”, so it will not be used further
more in this documentation.

After so much praise a bitter pill: AS cannot generate linkable code. An
extension with a linker needs considerable effort and is not planned at the
moment.

Those who want to take a look at the sources of AS can simply get the
Unix version of AS, which comes as source for self-compiling. The sources
are definitely not in a format that is targeted at easy understanding - the
original Pascal version still raises its head at a couple of places, and I do not
share a couple of common opinions about 'good’” C coding.

DOS

DPMI

08/2

UNIX

20 CHAPTER 1. INTRODUCTION

1.3 Supported Platforms

Though AS started as a pure DOS program, there are a couple of versions
available that are able to exploit a bit more than the Real Mode of an Intel
CPU. Their usage is kept as compatible to the DOS version as possible, but
there are of course differences concerning installation and embedding into
the operating system in question. Sections in this manual that are only valid
for a specific version of AS are marked with a corresponding sidemark (at
this paragraph for the DOS version) aheaded to the paragraph. In detail,
the following further versions exist (distributed as separate packages):

In case you run into memory problems when assembling large and complex
programs under DOS, there is a DOS version that runs in protected mode via
a DOS extender and can therefore make use of the whole extended memory
of an AT. The assembly becomes significantly slower by the extender, but at
least it works...

There is a native OS/2 version of AS for friends of IBM’s OS/2 operating
system. Since version 1.41r8, this is a full 32-bit OS/2 application, which of
course means that OS/2 2.x and at least an 80386 CPU are mandatory.

You can leave the area of PCs-only with the C version of AS that was designed
to be compilable on a large number of UNIX systems (this includes OS/2
with the emx compiler) without too much of tweaking. In contrast to the
previously mentioned versions, the C version is delivered in source code, i.e.
one has to create the binaries by oneself using a C compiler. This is by far
the simpler way (for me) than providing a dozen of precompiled binaries for
machines I sometimes only have limited access to...

Chapter 2

Assembler Usage

Scotty: Captain, we din’ can reference it!

Kirk: Analysis, Mr. Spock?

Spock: Captain, it doesn’t appear in the symbol table.
Kirk: Then it’ s of external origin?

Spock: Affirmative.

Kirk: Mr. Sulu, go to pass two.

Sulu: Aye aye, sir, going to pass two.

2.1 Hardware Requirements

The hardware requirements of AS vary substantially from version to version:

The DOS version will principally run on any IBM-compatible PC, ranging DOS
from a PC/XT with 4-dot-little megahertz up to a Pentium. However, similar

to other programs, the fun using AS increases the better your hardware

is. An XT user without a hard drive will probably have significant trouble
placing the overlay file on a floppy because it is larger than 500 Kbytes...the

PC should therefore have at least a hard drive, allowing acceptable loading

times. AS is not very advanced in its main memory needs: the program itself
allocates less than 300 Kbytes main memory, AS should therefore work on
machines with at least 512 Kbytes of memory.

The version of AS compiled for the DOS Protected Mode Interface (DPMI) DPMI

21

UNIX

22 CHAPTER 2. ASSEMBLER USAGE

requires at least 1 Mbyte of free extended memory. A total memory capacity
of at least 2 Mbytes is therefore the absolute minimum given one does not
have other tools in the XMS (like disk caches, RAM disks, or a hi-loaded
DOS); the needs will rise then appropriately. If one uses the DPMI version
in a DOS box of OS/2, one has to assure that DPMI has been enabled via the
box’s DOS settings (set to on or auto) and that a sufficient amount of XMS
memory has been assigned to the box. The virtual memory management of
OS/2 will free you from thinking about the amount of free real memory.

The C version of AS is delivered as source code and therefore requires a
UNIX or OS/2 system equipped with a C compiler. The compiler has to
fulfill the ANSI standard (GNU-C for example is ANSI-compliant). You
can look up in the README file whether your UNIX system has already been
tested so that the necessary definitions have been made. You should reserve
about 15 Mbytes of free hard disk space for compilation; this value (and the
amount needed after compilation to store the compiled programs) strongly
differs from system to system, so you should take this value only as a rough
approximation.

2.2 Delivery

Principally, you can obtain AS in one of two forms: as a binary or a source
distribution. In case of a binary distribution, one gets AS, the accomanying
tools and auxiliary files readily compiled, so you can immediately start to
use it after unpacking the archive to the desired destination on your hard
drive. Binary distibutions are made for widespread platforms, where either
the majority of users does not have a compiler or the compilation is tricky
(currently, this includes DOS and OS/2). A source distribution in contrast
contains the complete set of C sources to generate AS; it is ultimately a
snapshot of the source tree I use for development on AS. The generation of
AS from the sources and their structure is described in detail in appendix
which is why at this place, only the contents and installation of a binary
distribution will be described:

The contents of the archive is separated into several subdirectories, therefore
you get a directory subtree immediately after unpacking without having to
sort out things manually. The individual directories contain the following
groups of files:

2.2. DELIVERY 23

e BIN: executable programs, text resources;

e INCLUDE: include files for assembler programs, e.g. register definitions
or standard macros;

e MAN: quick references for the individual programs in Unix 'man’ format.
A list of the files found in every binary distribution is given in table In

case a file listed in one of these (or the following) tables is missing, someone
took a nap during copying (probably me)...

| File | Function
Directory BIN
AS.EXE executable of assembler
PLIST.EXE lists contents of code files
PBIND.EXE merges code files
P2HEX.EXE converts code files to hex files
P2BIN.EXE converts code files to binary files
AS.MSG text resources for AS (DOS only)
PLIST.MSG text resources for PLIST *)
PBIND.MSG text resources for PBIND *)
P2HEX.MSG text resources for P2HEX *)
P2BIN.MSG text resources for P2BIN *)
TOOLS.MSG common text resources for all tools *)
CMDARG.MSG common text resources for all programs *)
IOERRS.MSG
*) DOS only
Directory DOC
AS_DE.DOC german documentation, ASCII format
AS DE.HTML german documentation, HTML format
AS DE.TEX german documentation, LaTeX format
AS_EN.DOC english documentation, ASCII format
AS_EN.HTML english documentation, HTML format
AS_EN.TEX english documentation, LaTeX format
Directory INCLUDE
BCDIC.INC definition of BCDIC/code page 359
BITFUNCS.INC functions for bit manipulation

REG78310.INC
REGT78KO0.INC
REG96.INC
REGACE.INC
REGFS8.INC
REGAVROLD.INC
REGAVR.INC
REGCOLD.INC
REGCOPS.INC
REGGP32.INC
REGH16.INC
REGHCI12.INC
REGM16C.INC
REGMSP.INC
REGPDK.INC
REGS12Z.INC
REGSTG6.INC
REGST7.INC

24 CHAPTER 2. ASSEMBLER USAGE
’ File ‘ Function
CTYPE.INC functions for classification of
characters
EBCDIC.INC includes all EBCDIC variants
CP037.INC definition EBCDIC (code page 037)
CP5100.INC definition character set IBM 5100
CP5110.INC definition EBCDIC (IBM 5110)
80CH0X.INC register addresses SAB C50x
80CH52.INC register addresses 80C552
H8_3048.INC register addresses H8/3048
KENBAK.INC register addressed Kenbak-1
RADIX50.INC definition of RADIX 50 character set
REG166.INC addresses and instruction macros 80C166/167
REG251.INC addresses and bits 80C251
REG29K.INC peripheral addresses AMD 2924x
REG5H3X.INC register addresses H8/53x
REG6303.INC register addresses 6303
REG683XX.INC register addresses 68332/68340/68360
REGT7000.INC register addresses TMS70Cxx

register addresses & vectors 78K3

register addresses 78K0

register addresses MCS-96

register addresses ACE

register and memory addresses F8

register and bit addresses AVR family (old)
register and bit addresses AVR family
register and bit addresses Coldfire family
register addresses COPS

register addresses 68HC908GP 32

register addresses H16

register addresses 68HC12

register addresses Mitsubishi M16C
register addresses TT MSP430

register and bit addresses PMC/PMS/PFSxxx
register and bit addresses S127 family
register and macro definitions ST6

register and macro definitions ST7

2.2. DELIVERY 25
’ File Function
REGSTMS.INC register and macro definitions STM8
REGST9.INC register and macro definitions ST9
REGV60.INC register addresses NEC V60
REGZ380.INC register addresses Z380
STDDEF04.INC register addresses 6804
STDDEF16.INC instruction macros and register addresses
PIC16C5x
STDDEF17.INC register addresses PIC17C4x
STDDEF18.INC register addresses PIC16C8x
STDDEF2X.INC register addresses TMS3202x
STDDEF37.INC register and bit addresses TMS370xxx
STDDEF3X.INC peripheral addresses TMS320C3x
STDDEF4X.INC peripheral addresses TMS320C4x
STDDEF47.INC instruction macros TLCS-47

STDDEF51.INC
STDDEF56K.INC
STDDEF5X.INC
STDDEF60.INC

REGSX20.INC
AVR/.INC

COLDFIRE/.INC
PDK/.INC
3127/.INC
ST6/.INC
ST7/INC

STMS/.INC

STDDEF62.INC

definition of SFRs and bits for
8051/8052/80515

register addresses DSP56000

peripheral addresses TMS320C5x

instruction macros and register addresses
PowerPC

register and bit addresses Parallax SX20/28
register and bit addresses AVR family

(do not include directly, use REGAVR.INC)
register and bit addresses ColdFire family
(do not include directly, use REGCOLD.INC)
register and bit addresses PMC/PMS/PFSxxx
(do not include directly, use REGPDK.INC)
register and bit addresses S127 family

(do not include directly, use REGS12Z.INC)
register and bit addresses ST6 family

(do not include directly, use REGST6.INC)
register and bit addresses ST7 family

(do not include directly, use REGST7.INC)
register and bit addresses STMS family

(do not include directly, use REGSTMS8.INC)
register addresses and macros ST6 (old)

DPMI

05/2

DOS

26 CHAPTER 2. ASSEMBLER USAGE
’ File Function
STDDEF75.INC register addresses 75K0
STDDEF87.INC register and memory addresses TLCS-870
STDDEF90.INC register and memory addresses TLCS-90
STDDEF96.INC register and memory addresses TLCS-900
STDDEFXA.INC SFR and bit addresses Philips XA
STDDEFZ8.INC register addresses Z8 family (old)
REGZ8.INC register addresses Z8 family (new)
78/.INC register and bit addresses Z8 family

(do not include directly, use REGZ8.INC)

Directory LIB

Directory MAN

ASL.1 Short Reference for AS
PLIST.1 Short Reference for PLIST
PBIND.1 Short Reference for PBIND
P2HEX.1 Short Reference for P2HEX
P2BIN.1 Short Reference for P2BIN

Table 2.1: Standard Contents of a Binary Distribution

Depending on the platform, a binary distribution however may contain more
files to allow operation, like files necessary for DOS extenders. In case of
the DOS DPMI version , the extensions listed in table result. Just to
mention it: it is perfectly O.K. to replace the tools with their counterparts
from a DOS binary distribution; on the on hand, they execute significantly
faster without the extender’s overhead, and on the other hand, they do not
need the extended memory provided by the extender.

An OS/2 binary distribution contains in addition to the base files a set of
DLLs belonging to the runtime environment of the emx compiler used to
build AS (table[2.3)). In case you already have these DLLs (or newer versions
of them), you may delete these and use your ones insted.

2.3 Installation

There is no need for a special installation prior to usage of AS. It is sufficient

2.3. INSTALLATION 27

’ File \ Function
Directory MAN
ASL.1 quick reference for AS
PLIST.1 quick reference for PLIST
PBIND.1 quick reference for PBIND
P2HEX.1 quick reference for P2HEX
P2BIN.1 quick reference for P2BIN
Directory BIN
DPMI16BI.OVL DPMI server for the assembler
RTM.EXE runtime module of the extender

Table 2.2: Additional Files in a DPMI Binary Distribution

’ File ‘ function ‘
Directory BIN
EMX.DLL runtime libraries for AS and
EMXIO.DLL its tools
EMXLIBC.DLL
EMXWRAP.DLL

Table 2.3: Additional Files in an OS/2 binary distribution

DPMI

28 CHAPTER 2. ASSEMBLER USAGE

to unpack the archive in a fitting place and to add a few minor settings. For
example, this is an installation a user used to UNIX-like operating systems
might choose:

Create a directory c:\as an (I will assume in the following that you are going
to install AS on drive C), change to this directory and unpack the archiv,
keeping the path names stored in the archive (when using PKUNZIP, the
command line option -d is necessary for that). You now should have the
following directory tree:

c:\as
:\as\bin
:\as\include
:\as\1lib
:\as\man
:\as\doc
:\as\demos

O o o0 o0 o0 0

Now, append the directory c:\as\bin to the PATH statement in your
AUTOEXEC.BAT, which allows the system to find AS and its tools. With your
favourite text editor, create a file named AS.RC in the 1ib directory with the
following contents:

-i c:\as\include

This so-called key file tells AS where to search for its include files. The
following statement must be added to your AUTOEXEC.BAT to tell AS to read
this file:

set ASCMD=@c:\as\lib\as.rc

There are many more things you can preset via the key file; they are listed
in the following section.

The installation of the DPMI version should principally take the same course
as for the pure DOS version; as soon as the PATH contains the bin directory,
the DOS extender’s files will be found automatically and you should not
notice anything of this mechanism (except for the longer startup time...).
When working on an 80286-based computer, it is theoretically possible tha
you get confronted with the following message upon the first start:

2.4. START-UP COMMAND, PARAMETERS 29

machine not in database (run DPMIINST)

Since the DPMIINST tool ins not any more included in newer versions of
Borland’s DOS extender, I suppose that this is not an item any more...in
case you run into this, contact me!

The installation of the OS/2 version can generally be done just like for the
DOS version, with the addition that the DLLs have to be made visible for the
operating system. In case you do not want to extend the LIBPATH entry in
your CONFIG.SYS, it is of course also valid to move the DLLs into a directory
already listed in LIBPATH.

As already mentioned, the installation instructions in this section limit them-
selves to binary distributions. Since an installation under Unix is currently
alway a source-based installation, the only hint I can give here is a reference
to appendix

2.4 Start-Up Command, Parameters
AS is a command line driven program, i.e. all parameters and file options
are to be given in the command line.

A couple of message files belongs to AS (recognizable by their suffix MSG)
AS accesses to dynamically load the messages appropriate for the national
language. AS searches the following directories for these files:

e the current directory;

e the EXE-file’s directory;

e the directory named in the AS_MSGPATH environment variable, or alter-
nitavely the directories listed in the PATH environment variable;

e the directory compiled into AS via the LIBDIR macro.

These files are indispensable for a proper operation of AS, i.e. AS will termi-
nate immediately if these files are not found.

08/2

UNIX

DOS/

DPMI

DPMI

30 CHAPTER 2. ASSEMBLER USAGE

The language selection (currently only German and English) is based on the
COUNTRY setting under DOS and OS/2 respectively on the LANG environment
variable under Unix.

In order to fulfill AS’s memory requirements under DOS, the various code
generator modules of the DOS version were moved into an overlay which
is part of the EXE file. A separate OVR file like in earlier versions of AS
therefore dose not exist any more, AS will however still attempt to reduce
the overlaying delays by using eventually available EMS or XMS memory.
In case this results in trouble, you may suppress usage of EMS or XMS by
setting the environment variable USEXMS or USEEMS to n. E.g., it is possible
to suppress the using of XMS by the command:

SET USEXMS=n

Since AS performs all in- and output via the operating system (and therefore
it should run also on not 100% compatible DOS-PC’s) and needs some basic
display control, it emits ANSI control sequences during the assembly. In
case you should see strange characters in the messages displayed by AS, your
CONFIG.SYS is obviously lacking a line like this:

device=ansi.sys

but the further functions of AS will not be influenced hereby. Alternatively
you are able to suppress the output of ANSI sequences completely by setting
the environment variable USEANSI to n.

The DOS extender of the DPMI version can be influenced in its memory
allocation strategies by a couple of environment variables; if you need to
know their settings, you may look up them in the file DPMIUSER.DOC. It is
additionally able to extend the available memory by a swap file. To do this,
set up an environment variable ASXSWAP in the following way:

SET ASXSWAP=<size>[,file namel

The size specification has to be done in megabytes and has to be done. The
file name in contrast is optional; if it is missing, the file is named ASX.TMP
and placed in the current directory. In any case, the swap file is deleted after
program end.

DOS

2.4. START-UP COMMAND, PARAMETERS 31

The command line parameters can roughly be divided into three categories:
switches, key file references (see below) and file specifications. Parameters
of these two categories may be arbitrarily mixed in the command line. The
assembler evaluates at first all parameters and then assembles the specified
files. From this follow two things:

e the specified switches affect all specified source files. If several source
files shall be assembled with different switches, this has to be done in
separate runs.

e it is possible to assemble more than one file in one shot and to bring it
to the top, it is allowed that the file specs contain wildcards.

Parameter switches are recognized by AS by starting with a slash (/) or
hyphen (-). There are switches that are only one character long and addi-
tionally switches composed of a whole word. Whenever AS cannot interpret
a switch as a whole word, it tries to interprete every letter as an individual
switch. For example, if you write

-queit
instead of
-quiet

AS will take the letters q, u, e, i, and t as individual switches. Multiple-
letter switches additionally have the difference to single-letter switches that
AS will accept an arbitrary mixture of upper and lower casing, whereas single-
letter switches may have a different meaning depending on whether upper or
lower case is used.

At the moment, the following switches are defined:

e 1: sends assembler listing to console terminal (mostly screen). In case
several passes have to be done, the listing of all passes will be send to
the console (in opposite to the next option).

e L: writes assembler listing into a file. The list file will get the same
name as the source file, only the extension is replaced by LST. Except
one uses...

32 CHAPTER 2. ASSEMBLER USAGE

e OLIST: with a fiel name as argument allows to redirect the listing to
a different file or a different path. This option may be used multiple
times in case multiple files are assembled with one execution.

e LISTRADIX: By default, all numeric output in the listing (addresses,
generated code, symbol values) is written in hexadecimal notation.
This switch requests usage of a different number system in the range of
2 to 36. For instance, -listradix 8 requests octal output. If the radix
value is written with a leading zero (e.g. 08 instead of 8), the program
counter’s current value is prited with leading zeros in the listing.

e SPLITBYTE [character]: Display numbers in the listing in byte
groups, separated by the given character. A period is used as sepa-
rator if no explicit character is given. This option is usually used in
conjunction with the LISTRADIX option. For instance, list radix 8 with
a period as character results in the so-called ’split octal’ notation.

e o: Sets the new name of the code file generated by AS. If this option is
used multiple times, the names will be assigned, one after the other, to
the source files which have to be assembled. A negation (see below) of
this option in connection with a name erases this name from the list.
A negation without a name erases the whole list.

e SHAREQUT:ditto for a SHARE file eventually to be created.

e c: SHARED-variables will be written in a format which permits an
easy integration into a C-source file. The extension of the file is H.

e p: SHARED-variables will be written in a format which permits easy
integration into the CONST-block of a Pascal program. The extension
of the file is INC.

e a: SHARED-variables will be written in a format which permits easy
integration into an assembler source file. The extension of the file is
INC.

Concerning effect and function of the SHARED-symbols please see chapters
2.13| resp. [3.9.1]

2.4. START-UP COMMAND, PARAMETERS 33

e g [format]: This switch instructs AS to create an additional file that
contains debug information for the program. Allowed formats are the
AS-specific MAP format (format=MAP), a NolCE-compatible command
file (format=NOICE), and the Atmel format used by the AVR tools
(format=ATMEL). The information stored in the MAP format is com-
prised of a symbol table and a table describing the assignment of source
lines to machine addresses. A more detailed description of the MAP
format can be found in section [5.2] The file’s extension is MAP, NOI, resp.
0BJ, depending on the chosen format. If no explicit format specification
is done, the MAP format is chosen.

e noicemask [valuel]: By default, AS lists only symbols from the CODE
segment in NoICE debug info files. With this option and an integer
value interpreted as a bit mask, symbols fom other segments may be
added. The assignment of segments to bit positions may be taken from

table B.2L
e w: suppress issue of warnings;

e E [file]: error messages and warnings produced by AS will be
redirected to a file. Instead of a file, the 5 standard handles
(STDIN..STDPRN) can also be specified as 0 to '4 . Default is !2,
meaning STDERR. If the file option is left out, the name of the error
file is the same as of the source file, but with the extension LOG.

e gq: This switch suppresses all messages of AS, the exceptions are error
messages and outputs which are are forced from the source file. The
time needed for assembly is slightly reduced hereby and if you call AS
from a shell there is no redirection required. The disadvantage is that
you may ’stay in the dark” for several minutes ... It is valid to write
quiet instead of q.

e v: This is verbose, i.e. the opposite of quiet operation. The only
additional information that is currently printed is the version info.

e version: Prints version information and exits.

e h: write hexadecimal numbers in lowercase instead of capital letters.
This option is primarily a question of personal taste.

34

CHAPTER 2. ASSEMBLER USAGE

i <path list>: issues a list of directories where the assembler shall
automatically search for include files, in case it didn’t find a file in the
current directory. The different directories have to be separated by
semicolons.

u: calculate a list of areas which are occupied in the segments. This
option is effective only in case a listing is produced. This option re-
quires considerable additional memory and computing performance. In
normal operation it should be switched off.

C: generates a list of cross references. It lists which (global) symbols
are used in files and lines. This list will also be generated only in case
a listing is produced. This option occupies, too, additional memory
capacity during assembly.

s: issues a list of all sections (see chapter [3.8)). The nesting is indicated
by indentations (Pascal like).

t: by means of this switch it is possible to separate single components
of the standard issued assembler-listing. The assignment of bits to
parts can be found in the next section, where the exact format of the
assembly listing is explained.

D: defines symbols. The symbols which are specified behind this op-
tion and separated by commas are written to the global symbol table
before starting the assembly. As default these symbols are written as
integer numbers with the value TRUE, by means of an appended equal
sign, however, you can select other values. The expression following
the equals sign may include operators or internal functions, but not
any further symbols, even if these should have been defined before in
the list! Together with the commands for conditional assembly (see
there) you may produce different program versions out of one source
file by command line inputs. CAUTION! If the case-sensitive mode
is used, this has to be specified in the command line before any symbol
definitions, otherwise symbol names will be converted to upper case at
this place!

A: stores the list of global symbols in another, more compact form. Use
this option if the assembler crashes with a stack overflow because of too

24.

START-UP COMMAND, PARAMETERS 35

long symbol tables. Sometimes this option can increase the processing
speed of the assembler, but this depends on the sources.

x: Sets the level of detail for error messages. The level is increased
resp. decreased by one each time this option is given. While on level 0
(default) only the error message itself is printed, an extended message
is added beginning at level 1 that should simplify the identification of
the error’s cause. Appendix [A] lists which error messages carry which
extended messages. At level 2 (maximum), the source line containing
the error is additionally printed.

n: If this option is set, the error messages will be issued additionally
with their error number (see appendix [A]). This is primarily intended
for use with shells or IDE’s to make the identification of errors easier
by those numbers.

U: This option switches AS to the case-sensitive mode, i.e. upper and
lower case in the names of symbols, sections, macros, character sets,
and user-defined functions will be distinguished. This is not the case
by default.

P: Instructs AS to write the source text processed by macro proces-
sor and conditional assembly into a file. Additional blank and pure
comment lines are missing in this file. The extension of this file is I.

M: If this switch is given, AS generates a file, that contains definitions of
macros defined in the source file that did not use the NOEXPORT option.
This new file has the same name as the source file, only the extension
is modified into MAC.

G: this switch defines whether AS should produce code or not. If
switched off, the processing will be stopped after the macro proces-
sor. This switch is activated by default (logically, otherwise you would
not get a code file). This switch can be used in conjunction with the P
switch, if only the macro processor of AS shall be used.

r [n]: issue warnings if situations occur that force a further pass.
This information can be used to reduce the number of passes. You
may optionally specify the number of the first pass where issuing of

36

CHAPTER 2. ASSEMBLER USAGE

such messages shall start. Without this argument, warnings will come
starting with the first pass. Be prepared for a bunch of messages!!

bigendian: This switch sets big endian mode for values placed in mem-
ory right from the program’s beginning, given the target architecture
supports the pseudo instruction of same name (see [3.2.13)).

plainbase: This switch enables omission of an empty index argument

right from the program’s beginning (see (3.2.12)).

underscrore-macroargs: This switch enables usage of underscore
characters in macro argument names (see |3.4.1)).

relaxed: this switch enables the RELAXED mode right from the be-
ginning of the program, which otherwise has to be enabled by the
pseudo instruction of sane name(see section [3.9.7)).

supmode: this switch enables right from the beginning of the program
usage of machine instructions that may only be used in the processor’s
supervisor mode (see section (3.2.4)).

Y: This switch instructs AS to to suppress all messages about out-of-
branch conditions, once the necessity for another pass is given. See
section for the (rare) situations that might make use of this switch
necessary.

cpu <name>: this switch allows to set the target processor AS shall
generate code for, in case the source file does not contain a CPU in-
struction and is not 68008 code. If the selected target supports CPU
arguments (see section , they may be used on the command line
as well. Using this switch with ? or 1ist as argument lists all imple-
mented targets.

alias <new>=<o0ld>: defines the processor type <new> to be an
alias for the type <old>. See section for the sense of processor
aliases.

gnuerrors: display messages about errors resp. warnings not in the
AS standard format, but instead in a format similar to the GNU C
compiler. This simplifies the integration of AS into environments tuned

2.4. START-UP COMMAND, PARAMETERS 37

for this format, however also suppresses the display of precise error
positions in macro bodies!

e maxerrors [n]: instructs the assembler to terminate assembly after
the given number of errors.

e maxerrors [n]: instructs the assembler to terminate assembly if the
include nesting level exceeds the given limit (default is 200).

e Werror: instructs the assembler to treat warnings as errors.

e compmode: This switch instructs the assembler to operate by default in
compatibility mode. See section for more information about this
mode.

e packing: This switch overrides the architecture specific default of the
PACKING option (see section [3.2.8)).

As long as switches require no arguments and their concatenation does not
result in a multi-letter switch, it is possible to specify several switches at one
time, as in the following example :

as test*.asm firstprog -cl /i c:\as\8051\include

All files TEST*.ASM as well as the file FIRSTPROG.ASM will be assembled,
whereby listings of all files are displayed on the console terminal. Additional
sharefiles will be generated in the C- format. The assembler should search
for additional include files in the directory C:\AS\8051\INCLUDE.

This example shows that the assembler assumes ASM as the default extension
for source files.

A bit of caution should be applied when using switches that have optional ar-
guments: if a file specification immediately follows such a switch without the
optional argument, AS will try to interprete the file specification as argument
- what of course fails:

as —-g test.asm

38 CHAPTER 2. ASSEMBLER USAGE

The solution in this case would either be to move the -g option the end or to
specify an explicit MAP argument.

Beside from specifying options in the command line, permanently needed
options may be placed in the environment variable ASCMD. For example, if
someone always wants to have assembly listings and has a fixed directory for
include files, he can save a lot of typing with the following command:

set ascmd=-L -i c:\as\8051\include

The environment options are processed before the command line, so options
in the command line can override contradicting ones in the environment
variable.

In the case of very long path names, space in the ASCMD variable may become
a problem. For such cases a key file may be the alternative, in which the
options can be written in the same way as in the command line or the ASCMD-
variable. But this file may contain several lines each with a maximum length
of 255 characters. In a key file it is important, that for options which require
an argument, switches and argument have to be written in the same line.
AS gets informed of the name of the key file by a @ aheaded in the ASCMD
variable, e.g.

set ASCMD=@c:\as\as.key

In order to neutralize options in the ASCMD variable (or in the key file), prefix
the option with a plus sign. For example, if you do not want to generate
an assembly listing in an individual case, the option can be retracted in this
way:

as +L <file>

Naturally it is not consequently logical to deny an option by a plus sign....
UNIX soit qui mal y pense.

References to key files may not only come from the ASCMD variable, but also
directly from the command line. Similarly to the ASCMD variable, prepend
the file’s name with a character:

as O<file>

2.4. START-UP COMMAND, PARAMETERS 39

The options read from a key file in this situation are processed as if they
had been written out in the command line in place of the reference, not like
the key file referenced by the ASCMD variable that is processed prior to the
command line options.

Referencing a key file from a key file itself is not allowed and will be answered
wit an error message by AS.

In case that you like to start AS from another program or a shell and this
shell hands over only lower-case or capital letters in the command line, the
following workaround exists: if a tilde (7) is put in front of an option letter,
the following letter is always interpreted as a lower-case letter. Similarly a
demands the interpretation as a capital letter. For example, the following
transformations result for:

/7T ——> /i
-#u --—> -U

In dependence of the assembly’s outcome, the assembler ends with the fol-
lowing return codes:

0 error free run, at maximum warnings occurred

1 The assembler displayed only its command-line parameters and terminated
immediately afterwards.

2 Errors occurred during assembly, no code file has been produced.
3 A fatal error occurred what led to immediate termination of the run.

4 An error occurred already while starting the assembler. This may be a
parameter error or a faulty overlay file.

255 An internal error occurred during initialization that should not occur
in any case...reboot, try again, and contact me if the problem is repro-
ducible!

Similar to UNIX, OS/2 extends an application’s data segment on demand
when the application really needs the memory. Therefore, an output like

511 KByte available memory

08/2

40 CHAPTER 2. ASSEMBLER USAGE

does not indicate a shortly to come system crash due to memory lack, it
simply shows the distance to the limit when OS/2 will push up the data
segment’s size again...

As there is no compatible way in C under different operating systens to
find out the amount of available memory resp. stack, both lines are missing
completely from the statistics the C version prints.

2.5 Format of the Input Files

Like most assemblers, AS expects exactly one instruction per line (blank
lines are naturally allowed as well). The lines must not be longer than 255
characters, additional characters are discarded.

A single line has following format:
[label[:]] <mnemonic>[.attr] [param[,param..]] [;comment]

A line may also be split over several lines in the source file, continuation
characters chain these parts together to a single line. One must however
consider that, due to the internal buffer structure, the total line must not be
longer than 256 characters. Line references in error messages always relate
to the last line of such a composed source line.

The colon for the label is optional, in case the label starts in the first column
(the consequence is that a machine or pseudo instruction must not start in
column 1). Tt is necessary to set the colon in case the label does not start in
the first column so that AS is able to distinguish it from a mnemonic. In the
latter case, there must be at least one space between colon and mnemonic if
the processor belongs to a family that supports an attribute that denotes an
instruction format and is separated from the mnemonic by a colon. This re-
striction is necessary to avoid ambiguities: a distinction between a mnemonic
with format and a label with mnemonic would otherwise be impossible.

Some signal processor families from Texas Instruments optionally use a dou-
ble line (|1) in place of the label to signify the parallel execution with the
previous instruction(s). If these two assembler instructions become a single
instruction word at machine level (C3x/C4x), an additional label in front
of the second instruction of course does not make sense and is not allowed.

UNIX

2.5. FORMAT OF THE INPUT FILES 41

The situation is different for the C6x with its instruction packets of variable
length: If someone wants to jump into the middle of an instruction packet
(bad style, if you ask me...), he has to place the necessary label before into
a separate line. The same is valid for conditions, which however may be
combined with the double line in a single source line.

The attribute is used by a couple of processors to specify variations or dif-
ferent codings of a certain instruction. The most prominent usage of the
attibute is is the specification of the operand size, for example in the case of
the 680x0 family (table [2.4)).

’ attribute ‘ arithmetic-logic instruction ‘ jump instruction ‘
B byte (8 bits) 8-bit-displacement
W word (16 bits) 16-bit-displacement
L long word (32 bits) 16-bit-displacement
Q quad word (64 bits) —

C half precision (16 bits)

S single precision (32 bits) 8-bit-displacement
D double precision (64 bits) —

X extended precision (80/96 bits) 32-bit-displacement
P decimal floating point (80/96 bits) | ———

Table 2.4: Allowed Attributes (Example 680x0)

Since this manual is not also meant as a user’s manual for the processor
families supported by AS, this is unfortunately not the place to enumerate
all possible attributes for all families. It should however be mentioned that
in general, not all instructions of a given instruction set allow all attributes
and that the omission of an attribute generally leads to the usage of the
"natural” operand size of a processor family. For more thorough studies,
consult a reasonable programmer’s manual, e.g. [1] for the 68K’s.

In the case of TLCS-9000, H8/500, and M16(C), the attribute serves both
as an operand size specifier (if it is not obvious from the operands) and as a
description of the instruction format to be used. A colon has to be used to
separate the format from the operand size, e.g. like this:

add.w:g rwlO,rw8

42 CHAPTER 2. ASSEMBLER USAGE

This example does not show that there may be a format specification without
an operand size. In contrast, if an operand size is used without a format
specification, AS will automatically use the shortest possible format. The
allowed formats and operand sizes again depend on the machine instruction
and may be looked up e.g. in [164], [35], [66], resp. [67].

The number of instruction parameters depends on the mnemonic and is prin-
cipally located between 0 and 20. The separation of the parameters from each
other is to be performed only by commas (exception: DSP56xxx, its paral-
lel data transfers are separated with blanks). Commas that are included in
brackets or quotes, of course, are not taken into consideration.

Instead of a comment at the end, the whole line can consist of comment if it
starts in the first column with a semicolon.

To separate the individual components you may also use tabulators instead
of spaces.

2.6 Format of the Listing

The listing produced by AS using the command line options i or I is roughly
divisible into the following parts :

1. issue of the source code assembled;

2. symbol list;

3. usage list;

4. cross reference list.
The two last ones are only generated if they have been demanded by addi-
tional command line options.

In the first part, AS lists the complete contents of all source files including
the produced code. A line of this listing has the following form:

[<n>] <line>/<address> <code> <source>

2.6. FORMAT OF THE LISTING 43

In the field n, AS displays the include nesting level. The main file (the file
where assembly was started) has the depth 0, an included file from there has
depth 1 etc.. Depth 0 is not displayed.

In the field line, the source line number of the referenced file is issued. The
first line of a file has the number 1. The address to which the code generated
from this line is written follows after the slash in the field address. The
number system used for the address is set via the listradix command line
option (2.4)), also whether the address is printed with leading zeros or not.

The code produced is written behind address in the field code, in hexadec-
imal notation. Depending on the processor type and actual segment the
values are formatted either as bytes or 16/32-bit-words. If more code is gen-
erated than the field can take, additional lines will be generated, in which
case only this field is used.

Finally, in the field source, the line of the source file is issued in its original
form.

The symbol table was designed in a way that it can be displayed on an 80-
column display whenever possible. For symbols of "normal length”, a double
column output is used. If symbols exceed (with their name and value) the
limit of 40 columns (characters), they will be issued in a separate line. The
output is done in alphabetical order. Symbols that have been defined but
were never used are marked with a star (*) as prefix.

The parts mentioned so far as well as the list of all macros/functions defined
can be selectively masked out from the listing. This can be done by the
already mentioned command line switch —t. There is an internal byte inside
AS whose bits represent which parts are to be written. The assignment of
bits to parts of the listing is listed in table [2.5

All bits are set to 1 by default, when using the switch
-t <mask>

Bits set in <mask> are cleared, so that the respective listing parts are sup-
pressed. Accordingly it is possible to switch on single parts again with a plus
sign, in case you had switched off too much with the ASCMD variable... If
someone wants to have, for example, only the symbol table, it is enough to
write:

44 CHAPTER 2. ASSEMBLER USAGE

’ bit ‘ part ‘
0 | source file(s) + produced code
symbol table

macro list

function list

line numbering

register symbol list

character set table

N O i~ W N~

Table 2.5: Assignment of Bits to Listing Components

-t 2

The usage list issues the occupied areas hexadecimally for every single seg-
ment. If the area has only one address, only this is written, otherwise the
first and last address.

The cross reference list issues any defined symbol in alphabetical order and
has the following form:

symbol <symbol name> (=<value>,<file>/<line>):
file <file 1>:
<a1>[(m1)] ... <nk> [(mk)]

file <file 1>:
<n1>[(m1)] <nk> [(mk)]

The cross reference list lists for every symbol in which files and lines it has
been used. If a symbol was used several times in the same line, this would
be indicated by a number in brackets behind the line number. If a symbol
was never used, it would not appear in the list; The same is true for a file
that does not contain any references for the symbol in question.

CAUTION! AS can only print the listing correctly if it was previously
informed about the output media’s page length and width! This has to be
done with the PAGE instruction (see . The preset default is a length of
60 lines and an unlimited line width.

2.7. SYMBOL CONVENTIONS 45

2.7 Symbol Conventions

Symbols are allowed to be up to 255 characters long (as hinted already in
the introduction) and are being distinguished on the whole length, but the
symbol names have to meet some conventions:

Symbol names are allowed to consist of a random combination of letters,
digits, underlines and dots, whereby the first character must not be a digit.
The dot is only allowed to meet the MCS-51 notation of register bits and
should - as far as possible - not be used in own symbol names. To separate
symbol names in any case the underline (_) and not the dot (.) should be
used .

AS is by default not case-sensitive, i.e. it does not matter whether one uses
upper or lower case characters. The command line switch U however allows to
switch AS into a mode where upper and lower case makes a difference. The
predefined symbol CASESENSITIVE signifies whether AS has been switched
to this mode: TRUE means case-sensitiveness, and FALSE its absence.

Table shows the most important symbols which are predefined by AS.
CAUTION! While it does not matter in case-sensitive mode which combi-
nation of upper and lower case to use to reference predefined symbols, one
has to use exactly the version given above (only upper case) when AS is in
case-sensitive mode!

Additionally some pseudo instructions define symbols that reflect the value
that has been set with these instructions. Their descriptions are explained
at the individual commands belonging to them.

A hidden feature (that has to be used with care) is that symbol names may
be assembled from the contents of string symbols. This can be achieved by
framing the string symbol’s name with curly braces and inserting it into the
new symbol’s name. This allows for example to define a symbol’s name based
on the value of another symbol:

cnt set cnt+1
temp equ "\{CNT}"
jnz skip{temp}

skip{temp}: nop

46 CHAPTER 2. ASSEMBLER USAGE

’ name ‘ meaning ‘
TRUE logically "true”
FALSE logically ”false”
CONSTPI Pi (3.1415.....)
VERSION version of AS in BCD-coding,

e.g. 1331 hex for version 1.33pl
ARCHITECTURE | target platform AS was compiled for, in
the style processor-manufacturer-operating

system
DATE date and
TIME time of the assembly (start)
MOMCPU current target CPU

(see the CPU instruction)
MOMFILE current source file
MOMLINE line number in source file
MOMPASS number of the currently running pass

MOMSECTION name of the current section
or an empty string
*x . $resp. PC current value of program counter

Table 2.6: Predefined Symbols

CAUTION: The programmer has to assure that only valid symbol names
are generated!

A complete list of all symbols predefined by AS can be found in appendix [E]

Apart from its value, every symbol also owns a marker which signifies to
which segment it belongs. Such a distinction is mainly needed for processors
that have more than one address space. The additional information allows
AS to issue a warning when a wrong instruction is used to access a symbol
from a certain address space. A segment attribute is automatically added to
a symbol when is gets defined via a label or a special instruction like BIT;
a symbol defined via the ”allround instructions” SET resp. EQU is however
"typeless”, i.e. its usage will never trigger warnings. A symbol’s segment
attribute may be queried via the buit-in function SYMTYPE, e.g.:

Label:

2.8. TEMPORARY SYMBOLS 47

Attr equ symtype(Label) ; results in 1

The individual segment types have the assigned numbers listed in table
Register symbols which do not really fit into the order of normal symbols are
explained in section [2.12] The SYMTYPE function delivers -1 as result when
called with an undefined symbol as argument. However, if all you want to
know is whether a symbol is defined or not, you may as well use the DEFINED
function.

segment return value
<none>
CODE
DATA
IDATA
XDATA
YDATA
BITDATA
10

REG
ROMDATA
EEDATA
<Register Symbol> 128

D000 oUW RO

Table 2.7: return values of the SYMTYPE function

2.8 Temporary Symbols

Especially when dealing with programs that contain sequences of loops of if-
like statements, one is continuously faced with the problem of inventing new
names for labels - labels of which you know exactly that you will never need to
reference them again afterwards and you really would like to get 'rid’ of them
somehow. A simple solution if you don’t want to swing the large hammer
of sections (see chapter are temporary symbols which remain valid as
long as a new, non-temporary symbol gets defined. Other assemblers offer a
similar mechanism which is commonly referred as 'local symbols’; however,

48 CHAPTER 2. ASSEMBLER USAGE

for the sake of a better distinction, I want to stay with the term 'temporary
symbols’. AS knows three different types of temporary symbols, in the hope
to offer everyone 'switching’ to AS a solution that makes conversion as easy
as possible. However, practically every assembler has its own interpretation
of this feature, so there will be only few cases where a 1:1 solution for existing
code:

2.9 Named Temporary Symbols

A symbol whose name starts with two dollar signs (something that is neither
allowed for non-temporary symbols nor for constants) is a named temporary
symbol. AS keeps an internal counter which is reset to 0 before assembly
begins and which gets incremented upon every definition of a non-temporary
symbol. When a temporary symbol is defined or referenced, both leading
dollar signs are discarded and the counter’s current value is appended. This
way, one regains the used symbol names with every definition of a non-
temporary symbol - but you also cannot reach the previously symbols any
more! Temporary symbols are therefore especially suited for usage in small
instruction blocks, typically a dozen of machine instructions, definitely not
more than one screen. Otherwise, one easily gets confused...

Here is a small example:

$$1loop: nop
dbra do,3loop

split:

$$1loop: nop
dbra do,3loop

Without the non-temporary label between the loops, of course an error mes-
sage about a double-defined symbol would be the result.

2.9. NAMED TEMPORARY SYMBOLS 49

2.9.1 Nameless Temporary Symbols

For all those who regard named temporary symbols still as too complicated,
there is an even simpler variant: If one places a single puls or minus sign as a
label, this is converted to symbol names of __forwnn respectively __backmm,
with nn respectively mm being counters that start counting at zero. Those
symbols are referenced via the special names - -- --- respectively + ++
+++ which refer to the three last 'minus symbols’ and the next three 'plus
symbols’. Therefore, the selection between these two variants depends on
whether one wants to forward- or backward-reference a symbol.

Apart from plus and minus, defining nameless temporary symbols also exists
in a third variant, namely a slash (/). A temporary symbol defined in this
way may be referenced both backward and forward, i.e. it is treated either
as a plus or a minus, depending on the way it is being referenced.

Nameless temporary symbols are usually used in constructs that fit on one
screen page, like skipping a few machine instructions or tight loops - things
would becone to puzzling otherwise (this only a good advice, however...). An
example for this is the following piece of code, this time as 65xx code:

cpu 6502
- 1dx #00
- dex
bne - ; branch to ’dex’
lda RealSymbol
beq + ; branch to ’bne --’
jsr SomeRtn
iny
+ bne - ; branch to ’1ldx #00’
SomeRtn:
rts
RealSymbol:
dfs 1

inc ptr

50 CHAPTER 2. ASSEMBLER USAGE

bne + ; branch to ’tax’
inc ptr+l
+ tax
bpl ++ ; branch to ’dex’
beq + ; branch forward to ’rts’
lda #0
/ rts ; slash used as wildcard.
+ dex
beq - ; branch backward to ’rts’
ptr: dfs 2

2.9.2 Composed Temporary Symbols

This is maybe the type of temporary symbols that is nearest to the concept
of local symbols and sections. Whenever a symbol’s name begins with a dot
(.), the symbol is not directly stored with this name in the symbol table.
Instead, the name of the most recently-defined symbol not beginning with a
dot is prepended to the symbols name. This way, 'non-dotted” symbols take
the role of section separators and 'dotted” symbol names may be reused after
a 'non-dotted’ symbol has been defined. Take a look at the following little
example:

procl: ; non-temporary symbol ’procl’

.loop moveq #20,d0 ; actually defines ’procl.loop’
dbra dO, .loop
rts

proc2: ; non-temporary symbol ’proc2’

.loop moveq #10,d1 ; actually defines ’proc2.loop’
jsr procl

dbra di, .loop

rts

2.10. FORMULA EXPRESSIONS o1

Note that it is still possible to access all temporary symbols, even without be-
ing in the same ’area’, by simply using the composed name (like "proc2.loop’
in the previous example).

It is principally possible to combine composed temporary symbols with sec-
tions, which makes them also to local symbols. Take however into ac-
count that the most recent non-temporary symbol is not stored per-section,
but simply globally. This may change however in a future version, so one
shouldn’t rely on the current behaviour.

2.10 Formula Expressions

In most places where the assembler expects numeric inputs, it is possible
to specify not only simple symbols or constants, but also complete formula
expressions. The components of these formula expressions can be either single
symbols and constants. Constants may be either integer, floating point, or
string constants.

2.10.1 Integer Constants

Integer constants describe non-fractional numbers. They are witten as a
sequence of digits. This may be done in different numbering systems (see
table [2.8)).

In case the numbering system has not been explicitly stated by adding the
special control characters listed in the table, AS assumes the base given with
the RADIX statement (which has itself 10 as default). This statement allows
to set up 'unusual’ numbering systems, i.e. others than 2, 8, 10, or 16.

Valid digits are numbers from 0 to 9 and letters from A to Z (value 10 to 35)
up to the numbering system’s base minus one. An exception from this is the
ASCII represenation: For this variant, a character’s ASCII value (or its code
in the currently active code page, see section describes a whole byte.
Therefore, integer constants written this way are identical to multi character
constants. These two expressions:

52 CHAPTER 2. ASSEMBLER USAGE

’ ‘ Intel Mode ‘ Motorola Mode ‘ C Mode ‘ IBM Mode ‘

Decimal Direct Direct Direct Direct
Hex Suffix H Prefix $ Prefix Ox | X'..” or H..
Ident hexh $hex Oxhex x’hex’
h’hex’
Binary Suffix B Prefix % Prefix Ob 0.
Ident binb %bin Obbin b’bin’
Octal Suffix O or Q Prefix @ Prefix 0 B
Ident octo Qoct Ooct o’oct’
octq
ASCII A
Ident a’asc’

Table 2.8: Defined Numbering Systems and Notations

>ABCD’
A’ ABCD’

are identical, the A’ prefix is redundant. One may enable this syntax for ex-
isting code, because there are a few original assemblers (e.g. for the Signetics
2650) that support this syntax.

Independent of the target, AS implements multi character constants in
big endian order, which means that "ABCD’ results in an integer value of
0x41424344. Why this? Well, AS’s first target was the Motorola 60008, and
no one ever objected...the only exception from this is the PDP-11 (and the
WD16 which uses an LSI-11): For better compatibility to DEC’s MACRO-
11, multi character are little endian if this target is used. For instance, ’AB’
results in ain integer value of 0x4241.

The usage of letters in integer constants however brings along some ambigui-
ties since symbol names are also sequences of numbers and letters: a symbol
name however must not start with a character from 0 to 9. This means that
an integer constant which is not clearly marked a such with a special prefix
character must not begin with a letter. One has to add an additional, oth-
erwise superfluous zero in front in such cases. The most prominent case is
the writing of hexadecimal constants in Intel mode: If the leftmost digit is
between A and F, the trailing H doesn’t help to clarify, an additional 0 has
to be prefixed (e.g. OFOH instead of FOH). The Motorola and C syntaxes

2.10. FORMULA EXPRESSIONS 53

which both mark the numbering system at the front of a constant do not
have this issue.

Quite tricky is furthermore that the higher the default numbering system set
via RADIX becomes, the more letters used to denote numbering systems in
Intel and C syntax become ’eaten’. For example, you cannot write binary
constants anymore after a RADIX 16, and starting at RADIX 18, the Intel syn-
tax even doesn’t allow to write hexadecimal constants any more. Therefore

CAUTION!

Appendix [D] lists which syntax is used by which target by default. Indepen-
dent of this default, there is always the option to add or delete individual
syntax variants via the INTSYNTAX instruction (see section . The names
listed as Ident, prefixed with a plus or minus sign, serve as arguments to this
instruction.

The RELAXED instruction (see section serves as a sort 'global enable
switch”: in relaxed mode, all notations may be used, independent of the
selected target processor. The result is that an arbitrary syntax may be used
(possibly loosing compatibility to standard assemblers).

Both INTSYNTAX and RELAXED specifically enable usage of the 'IBM syntax’
for all targets, which is sometimes found on other assemblers:

This notation puts the actual value into apostrophes and prepends the num-
bering system (’x’ or ’h’ for hexadecimal, 'o’ for octal and ’b’ for binary).
So, the integer constant 305419896 can be written in the following ways:

x’12345678’°

h’ 12345678’

072215053170’
b’00010010001101000101011001111000°

Another variant of this notation for some targets is to leave away the closing
apostrophe, to allow simpler porting of existing code. It is not recommended
for new programs.

UNIX

54 CHAPTER 2. ASSEMBLER USAGE

2.10.2 Floating Point Constants

Floating point constants are to be written in the usual scientific notation,
which is known in the most general form:

[-]<integer digits>[.post decimal positions] [E[-]exponent]

CAUTION! The assembler first tries to interprete a constant as an integer
constant and makes a floating-point format try only in case the first one
failed. If someone wants to enforce the evaluation as a floating point number,
this can be done by dummy post decimal positions, e.g. 2.0 instead of 2.

2.10.3 String Constants

String constants have to be enclosed in single or double quotation marks. In
order to make it possible to include quotation marks or special characters
in string constants, an ”escape mechanism” has been implemented, which
should sound familiar for C programmers:

The assembler understands a backslash (\) with a following decimal number
of three digits maximum in the string as a character with the according
decimal ASCII value. The numerical value may alternitavely be written in
hexadecimal or octal notation if it is prefixed with an x resp. a 0. In case
of hexadecimal notation, the maximum number of digits is limited to 2. For
example, it is possible to include an ETC character by writing \3. But be
careful with the definition of NUL characters! The C version currently uses
C strings to store strings internally. As C strings use a NUL character for
termination, the usage of NUL characters in strings is currently not portable!

Some frequently used control characters can also be reached with the follow-
ing abbreviations:

\b : Backspace \a : Bell \e : Escape
\t : Tabulator \n : Linefeed \r : Carriage Return
\\ : Backslash \’ or \H : Apostrophe

\" or \I : Quotation marks

2.10. FORMULA EXPRESSIONS 95

Both upper and lower case characters may be used for the identification
letters.

By means of this escape character, you can even work formula expressions
into a string, if they are enclosed by curly braces: e.g.

message "root of 81 : \{sqrt(81)}"
results in
root of 81 : 9

AS chooses with the help of the formula result type the correct output format,
further string constants, however, are to be avoided in the expression. Oth-
erwise the assembler will get mixed up at the transformation of capitals into
lower case letters. Integer results will by default be written in hexadecimal
notation, which may be changed via the OUTRADIX instruction.

Except for the insertion of formula expressions, you can use this ”escape-
mechanism” as well in ASCII defined integer constants, like this:

move.b #’\n’,d0

However, everything has its limits, because the parser with higher priority,
which disassembles a line into op-code and parameters, does not know what
it is actually working with, e.g. here:

move.l #’\’abc’,d0

After the third apostrophe, it will not find the comma any more, because it
presumes that it is the start of a further character constant. An error message
about a wrong parameter number is the result. A workaround would be to
write e.g., \i instead of \’.

2.10.4 String to Integer Conversion and Character
Constants

Earlier versions of AS strictly distinguished between character strings and
so-called ”character constants”: At first glance, a character constant looks
like a string, the characters are however enclosed in single instead of double
quotation marks. Such an object had the data type ’Integer’, i.e. it repre-
sented a number with the value given by the (ASCII) code of the character,
and it was something completely different:

UNIX

56 CHAPTER 2. ASSEMBLER USAGE

move.b #65,d0
move.b #’A’°,d0 ; equal to first instruction
move.b #"A",dO ; not allowed in older versions!

This strict differentiation no longer exists, so it is irrelevant whether single
or double quotes are used. If an integer value is expected as argument, and
a string is used, the conversion via the character’s (ASCII) value is done ”on
the fly” at this place. This means that in the example given, all three lines
result in the same machine code.

Such an implicit conversion to integer values also take place for strings con-
sisting of multiple constancs, which are sometimes called "multi character
constants”:

o ==$41
AB’ ==$4142
"ABCD’ ==$41424344

Multi character constants are the only case where using single or double
quotes still makes a difference. Many targets define pseudo instructions to
dispose constants in memory, and which accept different data types. In such
a case, it is still necessary to use double quotes if a character string shall be
placed in memory:

dc.w "ab" ; disposes two words (0x0041,0x0042)
dc.w ’ab’ ; disposes one word (0x4142)

Important: using the correct quotation is not necessary if the character string
is longer than the used operand size, which is two characters or 16 bits in
this example.

2.10.5 Evaluation

The calculation of intermediary results within formula expressions is always
done with the highest available resolution, i.e. 32 or 64 bits for integer
numbers, 80 bit for floating point numbers and 255 characters for strings.
An possible test of value range overflows is done only on the final result.

The portable C version only supports floating point values up to 64 bits
(resulting in a maximum value of roughly 103%®), but in turn features integer
lengths of 64 bits on some platforms.

2.10. FORMULA EXPRESSIONS o7

2.10.6 Operators

The assembler provides the operands listed in table for combination.
"Rank” is the priority of an operator at the separation of expressions into
subexpressions. The operator with the highest rank will be evaluated at the
very end. The order of evaluation can be defined by new bracketing.

The comparison operators deliver TRUE in case the condition fits, and
FALSE in case it doesn’t. For the logical operators an expression is TRUE
in case it is not 0, otherwise it is FALSE.

Two details have to be kept im mind when comparing register symbols.
First, two register symbols are equal if they refer to the same register. Some
processors have alias names for registers, and these aliases are regarded as
equal. Fr instance, the A7 register of a 68000 may also be referred to as SP,
and those two register symbols are equal. On the other hand, some processors
have more than one set of registers. The 68040, fo rinstance, has 'normal’
(integer) and floating point registers. There is no greater or smaller relation
between registers from different groups, the corresponding operators always
return FALSE. Only a test for equality or inequality makes sense.

The mirroring of bits probably needs a little bit of explanation: the operator
mirrors the lowest bits in the first operand and leaves the higher priority bits
unchanged. The number of bits which is to be mirrored is given by the right
operand and may be between 1 and 32 .

A small pitfall is hidden in the binary complement: As the computation is
always done with 32 resp. 64 bits, its application on e.g. 8-bit masks usually
results in values taht do not fit into 8-bit numbers any more due to the
leading ones. A binary AND with a fitting mask is therefore unavoidable!

2.10.7 Functions

In addition to the operators, the assembler defines another line of primarily
transcendental functions with floating point arguments which are listed in
tables2.10]and 2.11] The functions FIRSTBIT, LASTBIT, and BITPOS return
-1 as result if no resp. not exactly one bit is set. BITPOS additionally issues
an error message in such a case.

58 CHAPTER 2. ASSEMBLER USAGE

’ Operand ‘ Function ‘ #Args ‘ Int ‘ Float ‘ String ‘ Reg ‘ Rank ‘
<> inequality 2 yes yes yes yes 14
= alias for <>
>= greater or equal 2 yes yes yes yes 14
<= less or equal 2 yes yes yes yes 14

< truly smaller 2 yes yes yes yes 14
> truly greater 2 yes yes yes yes 14
= equality 2 yes yes yes yes 14
== alias for =
I log. XOR 2 yes no no no 13
I log. OR 2 yes no no no 12
&& log. AND 2 yes no no no 11
- log. NOT 1 yes no no no 2
- difference 2 yes yes no no 10
+ sum 2 yes yes yes no 10
modulo division 2 yes no no no 9
/ quotient 2 yes®) | yes no no 9
* product 2 yes yes no no 9
- power 2 yes yes no no 8
! binary XOR 2 yes no no no 7
| binary OR 2 yes no no no 6
& binary AND 2 yes no no no 5
>< mirror of bits 2 yes no no no 4
>> log. shift right 2 yes no no no 3
<< log. shift left 2 yes no no no 3
- binary NOT 1 yes no no no 1
*) remainder will be discarded

Table 2.9: Operators Predefined by AS

2.10. FORMULA EXPRESSIONS 59

’ name \ meaning argument \ result

SQRT square root arg >0 floating point
SIN sine arg € R floating point
COS cosine arg € IR floating point
TAN tangent arg # (2n + 1) x 7 | floating point
CcOoT cotangent arg #n T floating point
ASIN inverse sine larg <1 floating point
ACOS inverse cosine |arg <1 floating point
ATAN inverse tangent arg € R floating point
ACOT inverse cotangent arg € R floating point
EXP exponential function | arg € IR floating point
ALOG 10 power of argument | arg € IR floating point
ALD 2 power of argument | arg € IR floating point
SINH hyp. sine arg € IR floating point
COSH hyp. cosine arg € IR floating point
TANH hyp. tangent arg € R floating point
COTH hyp. cotangent arg # 0 floating point
LN nat. logarithm arg > 0 floating point
LOG dec. logarithm arg >0 floating point
LD bin. logarithm arg >0 floating point
ASINH inv. hyp. Sine arg € R floating point
ACOSH inv. hyp. Cosine arg > 1 floating point
ATANH inv. hyp. Tangent arg < 1 floating point
ACOTH inv. hyp. Cotangent | arg > 1 floating point
INT integer part arg € R floating point
BITCNT number of one’s integer integer

FIRSTBIT | lowest 1-bit integer integer

Table 2.10: Functions Predefined by AS - Part 1 (Integer and Floating Point
Functions

60 CHAPTER 2. ASSEMBLER USAGE
name meaning ‘ argument ‘ result
LASTBIT highest 1-bit integer integer
BITPOS unique 1-bit integer integer
SGN sign (0/1/-1) floating point | integer

or integer
ABS absolute value integer or integer or
floating point | floating point
TOUPPER matching capital integer integer
TOLOWER matching lower case | integer integer
UPSTRING changes all string string
characters
into capitals
LOWSTRING changes all string string
characters
into to lower case
STRLEN returns the length string integer
of a string
SUBSTR extracts parts of a | string, string
string integer,
integer
CHARFROMSTR | extracts a character | string, integer
from a string integer
STRSTR searches a substring | string, integer
in a string string
VAL evaluates contents string depends on
as expression argument
EXPRTYPE delivers type of integer, 0
argument float, 1
string 2

Table 2.11: Functions Predefined by AS - Part 2 (Integer and String Func-

tions

2.10. FORMULA EXPRESSIONS 61

The string function SUBSTR expects the source string as first parameter, the
start position as second and the number of characters to be extracted as third
parameter (a 0 means to extract all characters up to the end). Similarly,
CHARFROMSTR expects the source string as first argument and the character
position as second argument. In case the position argument is larger or
equal to the source string’s length, SUBSTR returns an empty string while
CHARFROMSTR returns -1. A position argument smaller than zero is treated
as zero by SUBSTR, while CHARFROMSTR will return -1 also in this case.

Here is an example how to use these both functions. The task is to put a
string into memory, with the string end being signified by a set MSB in the
last character:

dbstr macro arg

if strlen(arg) > 1

db substr(arg, 0, strlen(arg) - 1)

endif

if strlen(arg) > O

db charfromstr(arg, strlen(arg) - 1) | 80h
endif

endm

STRSTR returns the first occurence of the second string within the first one
resp. -1 if the search pattern was not found. Similarly to SUBSTR and
CHARFROMSTR, the first character has the position 0.

If a function expects floating point arguments, this does not mean it is im-
possible to write e.g.

sqr2 equ sqrt(2)

In such cases an automatic type conversion is engaged. In the reverse case
the INT-function has to be applied to convert a floating point number to
an integer. When using this function, you have to pay attention that the
result produced always is a signed integer and therefore has a value range of
approximately +/-2.0E9.

When AS is switched to case-sensitive mode, predefined functions may be
accessed with an arbitrary combination of upper and lower case (in contrast
to predefined symbols). However, in the case of user-defined functions (see

DOS/DPMI

62 CHAPTER 2. ASSEMBLER USAGE

section , a distinction between upper and lower case is made. This has
e.g. the result that if one defines a function Sin, one can afterwards access
this function via Sin, but all other combinations of upper and lower case will
lead to the predefined function.

For a correct conversion of lower case letters into capital letters a DOS version
> 3.30 is required.

2.11 Forward References and Other Disas-
ters

This section is the result of a significant amount of hate on the (legal) way
some people program. This way can lead to trouble in conjunction with AS
in some cases. The section will deal with so-called "forward references’. What
makes a forward reference different from a usual reference? To understand
the difference, take a look at the following programming example (please
excuse my bias for the 68000 family that is also present in the rest of this
manual):

move.l #10,d0
loop: move.l (al),dl
beq skip
neg.l dil
skip: move.l di,(al+)
dbra dO, loop

If one overlooks the loop body with its branch statement, a program remains
that is extremely simple to assemble: the only reference is the branch back
to the body’s beginning, and as an assembler processes a program from the
beginning to the end, the symbol’s value is already known before it is needed
the first time. If one has a program that only contains such backward refer-
ences, one has the nice situation that only one pass through the source code
is needed to generate a correct and optimal machine code. Some high level
languages like Pascal with their strict rule that everything has to be defined
before it is used exploit exactly this property to speed up the compilation.

Unfortunately, things are not that simple in the case of assembler, because
one sometimes has to jump forward in the code or there are reasons why

2.11. FORWARD REFERENCES AND OTHER DISASTERS 63

one has to move variable definitions behind the code. For our example,
this is the case for the conditional branch that is used to skip over another
instruction. When the assembler hits the branch instruction in the first
pass, it is confronted with the situation of either leaving blank all instruction
fields related to the target address or offering a value that ”hurts noone” via
the formula parser (which has to evaluate the address argument). In case
of a "simple” assembler that supports only one target architecture with a
relatively small number of instructions to treat, one will surely prefer the
first solution, but the effort for AS with its dozens of target architectures
would have become extremely high. Only the second way was possible: If
an unknown symbol is detected in the first pass, the formula parser delivers
the program counter’s current value as result! This is the only value suitable
to offer an address to a branch instruction with unknown distance length
that will not lead to errors. This answers also a frequently asked question
why a first-pass listing (it will not be erased e.g. when AS does not start a
second pass due to additional errors) partially shows wrong addresses in the
generated binary code - they are the result of unresolved forward references.

The example listed above however uncovers an additional difficulty of forward
references: Depending on the distance of branch instruction and target in the
source code, the branch may be either long or short. The decision however
about the code length - and therefore about the addresses of following labels
- cannot be made in the first pass due to missing knowledge about the target
address. In case the programmer did not explicitly mark whether a long
or short branch shall be used, genuine 2-pass assemblers like older versions
of MASM from Microsoft ”solve” the problem by reserving space for the
longest version in the first pass (all label addresses have to be fixed after the
first pass) and filling the remaining space with NOPs in the second pass. AS
versions up to 1.37 did the same before I switched to the multipass principle
that removes the strict separation into two passes and allows an arbitrary
number of passes. Said in detail, the optimal code for the assumed values is
generated in the first pass. In case AS detects that values of symbols changed
in the second pass due to changes in code lengths, simply a third pass is done,
and as the second pass’es new symbol values might again shorten or lengthen
the code, a further pass is not impossible. I have seen 8086 programs that
needed 12 passes to get everything correct and optimal. Unfortunately, this
mechanism does not allow to specify a maximum number passes; I can only
advise that the number of passes goes down when one makes more use of

64 CHAPTER 2. ASSEMBLER USAGE

explicit length specifications.

Especially for large programs, another situation might arise: the position of
a forward directed branch has moved so much in the second pass relative to
the first pass that the old label value still valid is out of the allowed branch
distance. AS knows of such situations and suppresses all error messages
about too long branches when it is clear that another pass is needed. This
works for 99% of all cases, but there are also constructs where the first
critical instruction appears so early that AS had no chance up to now to
recognize that another pass is needed. The following example constructs
such a situation with the help of a forward reference (and was the reason for
this section’s heading...):

cpu 6811
org $8000
beq skip
rept 60
ldd Var

endm

skip: nop

Var equ $10

Due to the address position, AS assumes long addresses in the first pass for
the LDD instructions, what results in a code length of 180 bytes and an out of
branch error message in the second pass (at the point of the BEQ instruction,
the old value of skip is still valid, i.e. AS does not know at this point that
the code is only 120 bytes long in reality) is the result. The error can be
avoided in three different ways:

1. Explicitly tell AS to use short addressing for the LDD instructions (1dd
<Var)

2. Remove this damned, rotten forward reference and place the EQU state-
ment at the beginning where it has to be (all right, I'm already calming
down...)

3. For real die-hards: use the -Y command line option. This option tells
AS to forget the error message when the address change has been de-
tected. Not pretty, but...

2.12. REGISTER SYMBOLS 65

Another tip regarding the EQU instruction: AS cannot know in which context
a symbol defined with EQU will be used, so an EQU containing forward refer-
ences will not be done at all in the first pass. Thus, if the symbol defined
with EQU gets forward-referenced in the second pass:

move.l #sym2,d0
sym2 equ syml+5
syml equ 0

one gets an error message due to an undefined symbol in the second pass...but
why on earth do people do such things?

Admittedly, this was quite a lengthy excursion, but I thought it was neces-
sary. Which is the essence you should learn from this section?

1. AS always tries to generate the shortest code possible. A finite number
of passes is needed for this. If you do not tweak AS extremely, AS will
know no mercy...

2. Whenever sensible and possible, explicitly specify branch and address
lengths. There is a chance of significantly reducing the number of passes
by this.

3. Limit forward references to what is absolutely needed. You make your
and AS’s live much easier this way!

2.12 Register Symbols

valid for: PowerPC, M-Core, XGate, 4004/4040, MCS-48/(2)51, 80C16z,
AVR, XS1, Z8, KCPSM, MicoS, MSP430(X), ST9, M16, M16C, HS/300,
H8/500, SH7z00, H16, 1960, XA, 29K, TLCS-9000, KENBAK, SC/MP

Sometimes it is desirable not only to assign symbolic names to memory ad-
dresses or constants, but also to a register, to emphasize its function in a
certain program section. This is no problem for processors that treat regis-
ters simply as another address space, as this allows to use numeric expressions
and one can use simple EQUs to define such symbols. (e.g. for the MCS-96 or

66 CHAPTER 2. ASSEMBLER USAGE

TMS70000). However, for most processors, register identifiers are fixed liter-
als which are seperately treated by AS for speed reasons. Therefore, registers
symbols (sometime also called 'register aliases’) are also a separate type of
symbols in the symbol table. Just like other symbols, they may be defined or
re-defined with EQU or SET, and there is a specialized REG instruction which
accepts only symbols and expressions of this type.

On the other hand, register symbols are subject of a couple of restrictions:
the number of literals is limited and depends on the selected target processor,
and arithmetic operations are not possibl eon registers A construct like tihs:

myreg reg rl7 ; definition of register symbol
addi myreg+1,3 ; does not work!

is not valid. Simple assignments are however possible:

myreg reg rl7 ; definition of register symbol
myreg?2 reg myreg ; myreg2 -> rl7

Furthermore, forward references are even more critical than for other types
of symbols. If a symbol is not (yet) defined, AS does not know which type
it is going to have,a nd will decide for a plain integer number. For most
target processors, a number is the equivalent of absolute memory addressing,
and on most processors, usage of memory operands is more limited than of
registers. Depending on situation, one will get an error message about a
non-allowed addressing mode, and no second pass will be started...

Analogous to ordinary symbols, register symbols are local to sections and it
is possible to access a register symbol from a specific section by appending
the section’s name enclosed in brackets.

2.13 Share File

This function is a by-product from the old pure-68000 predecessors of AS, I
have kept them in case someone really needs it. The basic problem is to access
certain symbols produced during assembly, because possibly someone would
like to access the memory of the target system via this address information.
The assembler allows to export symbol values by means of SHARED pseudo

2.14. PROCESSOR ALIASES 67

commands (see there). For this purpose, the assembler produces a text file
with the required symbols and its values in the second pass. This file may
be included into a higher-level language or another assembler program. The
format of the text file (C, Pascal or Assembler) can be set by the command
line switches p, c or, a.

CAUTION! If none of the switches is given, no file will be generated and
it makes no difference if SHARED-commands are in the source text or not!

When creating a Sharefile, AS does not check if a file with the same name
already exists, such a file will be simply overwritten. In my opinion a request
does not make sense, because AS would ask at each run if it should overwrite
the old version of the Sharefile, and that would be really annoying...

2.14 Processor Aliases

Common microcontroller families are like rabbits: They become more at a
higher speed than you can provide support for them. Especially the develop-
ment of processor cores as building blocks for ASICs and of microcontroller
families with user-definable peripherals has led to a steeply rising number of
controllers that only deviate from a well-known type by a slightly modified
peripheral set. But the distinction among them is still important, e.g. for the
design of include files that only define the appropriate subset of peripherals.
I have struggled up to now to integrate the most important reperesentatives
of a processor family into AS (and I will continue to do this), but sometimes
I just cannot keep pace with the development...there was an urgent need for
a mechanism to extend the list of processors by the user.

The result are processor aliases: the alias command line option allows to de-
fine a new processor type, whose instruction set is equal to another processor
built into AS. After switching to this processor via the CPU instruction, AS
behaves exactly as if the original processor had been used, with a single dif-
ference: the variables MOMCPU resp. MOMCPUNAME are set to the alias name,
which allows to use the new name for differentiation, e.g. in include files.

There were two reasons to realize the definition of aliases by the command
line and not by pseudo instructions: first, it would anyway be difficult to put
the alias definitions together with register definitions into a single include

68 CHAPTER 2. ASSEMBLER USAGE

file, because a program that wants to use such a file would have to include it
before and after the CPU instruction - an imagination that lies somewhere
between inelegant and impossible. Second, the definition in the command
line allows to put the definitions in a key file that is executed automatically
at startup via the ASCMD variable, without a need for the program to take
any further care about this.

Chapter 3

Pseudo Instructions

Not all pseudo instructions are defined for all processors. A note that shows
the range of validity is therefore prepended to every individual description.

3.1 Definitions

3.1.1 SET, EQU, and CONSTANT

valid for: all processors, CONSTANT only for KCPSM(3)

SET and EQU allow the definition of typeless constants, i.e. they will not be
assigned to a segment and their usage will not generate warnings because of
segment mixing. EQU defines constants which can not be modified (by EQU)
again, but SET permits the definition of variables, which can be modified
during the assembly. This is useful e.g. for the allocation of resources like
interrupt vectors, as shown in the following example:

VecCnt set 0 ; somewhere at the beginning
DefVec macro Name ; allocate a new vector
Name equ VecCnt

69

70 CHAPTER 3. PSEUDO INSTRUCTIONS

VecCnt set VecCnt+4
endm
DefVec Vecl ; results in Vec1=0
DefVec Vec2 ; results in Vec2=4

constants and variables are internally stored in the same way, the only dif-
ference is that they are marked as unchangeable if defined via EQU. Trying
to change a constant with SET will result in an error message.

EQU/SET allow to define constants of all possible types, e.g.

IntTwo equ 2
FloatTwo equ 2.0

Some processors unfortunately have already a SET instruction. For these tar-
gets, EVAL must be used instead of SET if no differentiation via the argument
count is possible. As an alternative, it is always possible to explicitly invoke
the pseudo instruction by prepending a period (.SET instead of SET).

A single equation sign or .EQU may be used instead of EQU. Similarly, one
may simply write := instead of SET resp. EVAL. Furthermore, there is an
‘alternate’ syntax that does not take the symbol’s name from the label field,
but instead from the first argument. So for instance, it is valid to write:

EQU IntTwo,?2
EQU FloatTwo,2.0

For compatibility reasons to the original assembler, the KCPSM target also
knows the CONSTANT statement, which - in contrast to EQU - always expects
name and value as arguments. For example:

CONSTANT comnstl, 2

CONSTANT is however limited to integer constants.

Symbols defined with SET or EQU are typeless by default, but optionally a seg-
ment name (CODE, DATA, IDATA, XDATA, YDATA, BITDATA, IO, orREG)or
MOMSEGMENT for the currently active segment may be given as a second or

3.1. DEFINITIONS 71

third parameter, allowing to assign the symbol to a specific address space. AS
does not check at this point if the used address space exists on the currently
active target processor!

A little hidden extra feature allows to set the program counter via SET or
EQU, something one would ordinarily do via ORG. To accomplish this, use the
special value as symbol name that may also be used to query the current
program counter’s value. Depending on the selected target architecture, this
is either an asterisk, a dollar sign, a period, or PC.

In case the target architecture supports instruction attributes to define the
operand size (e.g. on 680x0), those are also allowed for SET and EQU. The
operand size will be stored along with the symbol’s value in the symbol table.
Its use is architecture-dependant.

3.1.2 SFR and SFRB

valid for: various, SFRB only MCS-51

These instructions act like EQU, but symbols defined with them are assigned
to the directly addressable data resp. 1/O segment, i.e. they are preferrably
used for the definition of (as the name lets guess) hardware registers mapped
into the data res. I/O area. The allowed range of values is equal to the
range allowed for ORG in the data segment (see section . The difference
between SFR and SFRB is that SFRB marks the register as bit addressable,
which is why AS generates 8 additional symbols which will be assigned to
the bit segment and carry the names xx.0 to xx.7, e.g.

PSW sfr 0dOh ; results in PSW = DOH (data segment)
PSW sfrb 0dOh ; results in extra PSW.0 = DOH (bit)
; to PSW.7 = D7H (bit)

The SFRB instruction is not any more defined for the 80C251 as it allows
direct bit access to all SFRs without special bit symbols; bits like PSW.0 to
PSW.7 are automatically present.

Whenever a bit-addressable register is defined via SFRB, AS checks if the
memory address is bit addressable (range 20h..3fh resp. 80h, 88h, 90h,
98h...0f8h). If it is not bit-addressable, a warning is issued and the gen-
erated bit symbols are undefined.

72 CHAPTER 3. PSEUDO INSTRUCTIONS

3.1.3 XSFR and YSFR

valid for: DSP56xrzz

Also the DSP56000 has a few peripheral registers memory-mapped to the
RAM, but the affair becomes complicated because there are two data areas,
the X- and Y-area. This architecture allows on the one hand a higher paral-
lelism, but forces on the other hand to divide the normal SFR instruction into
the two above mentioned variations. They works identically to SFR, just that
XSFR defines a symbol in the X- addressing space and YSFR a corresponding
one in the Y-addressing space. The allowed value range is 0..$fIff.

3.1.4 LABEL

valid for: all processors

The function of the LABEL instruction is identical to EQU, but the symbol does
not become typeless, it gets the attribute "code”. LABEL is needed exactly
for one purpose: Labels are normally local in macros, that means they are
not accessible outside of a macro. With an EQU instruction you could get out
of it nicely, but the phrasing

<name> label $

generates a symbol with correct attributes.

3.1.5 BIT

valid for: MCS/(2)51, XA, 80C166, 75K0, ST9, AVR, S127, SX20/28, H16,
H8/300, H8/500, KENBAK, Padauk

BIT serves to equate a single bit of a memory cell with a symbolic name.
This instruction varies from target platform to target platform due to the
different ways in which processors handle bit manipulation and addressing:

The MCS/51 family has an own address space for bit operands. The function
of BIT is therefore quite similar to SFR, i.e. a simple integer symbol with the
specified value is generated and assigned to the BDATA segment. For all other

3.1. DEFINITIONS 73

processors, bit addressing is done in a two-dimensional fashion with address
and bit position. In these cases, AS packs both parts into an integer symbol
in a way that depends on the currently active target processor and separates
both parts again when the symbol is used. The latter is is also valid for the
80C251: While an instruction like

My_Carry bit PSW.7

would assign the value 0d7h to My_Carry on an 8051, a value of 070000d0h
would be generated on an 80C251, i.e. the address is located in bits 0..7 and
the bit position in bits 24..26. This procedure is equal to the way the DBIT
instruction handles things on a TMS370 and is also used on the 80C166, with
the only difference that bit positions may range from 0..15:

MSB BIT r5.15

On a Philips XA, the bit’s address is located in bits 0..9 just with the same
coding as used in machine instructions, and the 64K bank of bits in RAM
memory is placed in bits 16..23.

The BIT instruction of the 75K0 family even goes further: As bit expressions
may not only use absolute base addresses, even expressions like

bitl BIT @h+5.2

are allowed.

The ST9 in turn allows to invert bits, what is also allowed in the BIT instruc-
tion:

invbit BIT r6.!3

More about the ST9’s BIT instruction can be found in the processor specific
hints.

In case of H16, note that the address and bit position arguments are swapped.
This was done to make the syntax of BIT consistent with the machine in-
structions that maipulate individual bits.

74 CHAPTER 3. PSEUDO INSTRUCTIONS

3.1.6 DBIT

valid for: TMS 370xxx

Though the TMS370 series does not have an explicit bit segment, single bit
symbols may be simulated with this instruction. DBIT requires two operands,
the address of the memory cell that contains the bit and the exact position
of the bit in the byte. For example,

INT3 EQU PO19
INT3_ENABLE DBIT 0,INT3

defines the bit that enables interrupts via the INT3 pin. Bits defined this
way may be used in the instructions SBITO, SBIT1, CMPBIT, JBITO, and
JBIT.

3.1.7 DEFBIT and DEFBITB
S127

The S127 family’s processor core provides instructions to manipulate indi-
vidual bits in registers or memory cells. To conveniently address bits in the
CPU’s I/O area (first 4 Kbytes of the address space), a bit may be given
a symbolic name. The bit is defined by its memory address and the bit
position:

<name> defbit[.size] <address>,<position>

The address must be located within the first 4 Kbytes, and the operand size
may be 8, 16, or 32 bits (size=b/w/l). Consequently, the position may at
most be 7, 15 or 31. If no operand size is given, byte size (.b) is assumed.
A bit defined this way may be used as argument for the instructions BCLR,
BSET, BTGL, BRSET, and BRCLR:

mybit defbit.b $200,4
bclr.b $200,#4
bclr mybit

3.1. DEFINITIONS 75

Both uses of bclr in this example generate identical code. Since a bit defined
this way "knows” its size, the size attribute may be omitted when using it.
It is also possible to define bits that are located within a structure’s element:

mystruct struct dots
reg ds.w 1
flag defbit reg,4
ends
org $100
data mystruct
bset data.flag ; same as bset.w $100,#4
Super8

Opposed to the ’classic’ Z8, the Super8 core supports instructions to operate
on bits in working or general registers. ONe however has to to regard that
some of them can only operate on bits in one of the 16 working registers.
The DEFBIT instruction allows to define bits of either type:

workbit defbit r3,#4
slow defbit emt,#6

Bits that have been defined this way may be used just like a argument duple
of register and bit position:

1db r3,emt ,#6
1db r3,slo ; same result

bitc r3,#4
bitc workbit ; same result

728000

The Z8000 features instructions to set and clear bits, however they cannot
access addresses in 1/O space. For this reason, both DEFBIT and DEFBITB
only allow to define bit objects in memory space. The differentiation in
operand size is important because the Z8000 is a big endian processor: bit n
of a 16 bit word at address m corresponds to bit n of an 8-bit byte at address
m+1.

76 CHAPTER 3. PSEUDO INSTRUCTIONS

pwPD7807....PD7809

The lowest 16 bytes of the working area and special registers with an address
less than 16 are bit addressable.

3.1.8 DEFBITFIELD

valid for: S127

The S127 family’s CPU core not only deals with individual bits, it is also
able to extract a field of consecutive bits from an 8/16/24/32 value or to
insert a bit field into such a value. Similar to DEFBIT, a bit field may be
defined symbolically:

<Name> defbitfield[.size] <address>,<width>:<position>
Opposed to individual bits, an operand size of 24 bits (.p) is also alloweed.

The range of position and width is accordingly 0 to 23 resp. 1 to 24. It is
also allowed to define bit fields as parts of structures:

mystruct struct dots
reg ds.w 1
clksel defbitfield reg,4:8
ends
org $100
data mystruct
bfext d2,data.clksel ; fetch $100.w bits 4..11
; to D2 bits 0..7
bfins data.clksel,d?2 ; insert D2 bits 0..7 into

; $100.w bits 4..11

The internal representation of bits defined via DEFBIT is equivalent to bit
fields with a width of one. Therefore, a symbolically defined bit may also be
used as argument for BFINS and BFEXT.

3.1. DEFINITIONS 77

3.1.9 PORT

valid for: PALM, 8008/8080/8085/8086, XA, Z80, 78000, 520C2z/5z,
TLCS-47, AVR, FS, IMP-16

PORT works similar to EQU, just the symbol becomes assigned to the 1/O-
address range. Allowed values are 0..7 for the 3201x and 8008, 0..15 for the
320C2x and PALM, 0..65535 for the 8086, Z8000, and 320C5x, 0..63 for the
AVR, and 0..255 for the rest.

Example : an 8255 PIO is located at address 20H:

PIO_port_A port 20h

PIO_port_B port PIO_port_A+1
PIO_port_C port PIO_port_A+2
PIO_ctrl port PIO_port_A+3

3.1.10 REG and NAMEREG

valid for: 680x0, AVR, M*Core, ST9, 80C16x, Z8000, KCPSM,
PDP-11, WD16
(NAMEREG wvalid only for KCPSM(3)), LatticeMico8, MSP430(X)

Though it always has the same syntax, this instruction has a slightly differ-
ent meaning from processor to processor: If the processor uses a separate
addressing space for registers, REG has the same effect as a simple EQU for
this address space (e.g. for the ST9). REG defines register symbols for all
other processors whose function is described in section [2.12]

NAMEREG exists for compatibility reasons to the original KCPSM assembler.
It has an identical function, however both register and symbolic name are
given as arguments, for example:

NAMEREG s08, treg

On the PDP-11, REG may additionally be used without a name in the label
field. It then expects a single ON or OFF as argument and enables or disables
the built-in register aliases (Rn = %n, SP = R6, PC = R7). They are available
by default, and should only be disabled if they conflict with own synmbol
names in a program. The current setting may be read from the symbol
DEFAULT _REGSYMS.

78 CHAPTER 3. PSEUDO INSTRUCTIONS

3.1.11 LIV and RIV

valid for: 8X30x

LIV and RIV allow to define so-called "IV bus objects”. These are groups
of bits located in a peripheral memory cell with a length of 1 up to 8 bits,
which can afterwards be referenced symbolically. The result is that one does
not anymore have to specify address, position, and length separately for
instructions that can refer to peripheral bit groups. As the 8X30x processors
feature two peripheral address spaces (a "left” and a "right” one), there are
two separate pseudo instructions. The parameters of these instructions are
however equal: three parameters have to be given that specify address, start
position and length. Further hints for the usage of bus objects can be found
in section .

3.1.12 CHARSET

valid for: all processors

Single board systems, especially when driving LCDs, frequently use character
sets different to ASCII. So it is probably purely coincidental that the umlaut
coding corresponds with the one used by the PC. And there are of course also
(historical) systems that use some variant of EBCDIC...to avoid error-prone
manual encoding in the source code, the assembler contains a translation
table for characters which assigns a target character to each (ASCII) char-
acter in the source code. Use the CHARSET instruction to modify this table,
which initial translates one-to-one. CHARSET may be used with a variety of
arguments:

A simple
CHARSET

without any argument resets the table to the one-to-one default.

If only a single argument is given, it has to be a string expression which is
interpreted as a file name by AS:

CHARSET "mapping.bin"

3.1. DEFINITIONS 79

AS reads the first 256 bytes from this table and copies them into the transla-
tion table. This allows to activate complex, externally generated tables with
a single statement.

All other variants modify a single entry or a sequence of entries in the table.
Use two (integer) arguments to change a single entry:

CHARSET ’a’,128

means that the target system codes the ’a’ into the number 128. It is als
possible to define that a certain character is unavailable on the target system.
Leave the second argument empty to define this:

CHARSET ’[’,

If the 'deleted’ character shall be disposed in memory, this reported as an
error.

Use three arguments to remap a whole range of characters. The first and
second argument define the character range, and the third one defines the
mapping of the first character. For instance, if the target system does not
support lower case characters,

CHARSET ’a’,’z’,’A’

translates all lower-case characters automatically into the matching capital
letters. Similar to a single character, it is also possible to 'unmap’ a range of
characters:

CHARSET ’a’,’z’,
forbids usage of lower case letters.

The last variant (again only with two arguments), a string defines the map-
ping of a sequence of characters. Mapping of lower to upper case may there-
fore also be written like this: be written as

CHARSET ’a’,"ABCDEFGHIJKLMNOPQRSTUVWXYZ"

CAUTION! CHARSET not only affects string constants stored in memory,
but also multi character constants, i.e. integer constants written as " ASCII”.
This means that an already modified translation table can lead to different
results in the examples mentioned above!

The built-in function CODEPAGE_VAL allows to query the translation of a single
character in the current code page. It will return -1 for unmapped characters.

80 CHAPTER 3. PSEUDO INSTRUCTIONS

3.1.13 CODEPAGE

valid for: all processors

Though the CHARSET statement gives unlimited freedom in the character as-
signment between host and target platform, switching among different char-
acter sets can become quite tedious if several character sets have to be sup-
ported on the target platform. The CODEPAGE instruction however allows to
define and keep different character sets and to switch with a single statement
among them. CODEPAGE expects one or two arguments: the name of the set
to be used hereafter and optionally the name of another table that defines
its initial contents (the second parameter therefore only has a meaning for
the first switch to the table when AS automatically creates it). If the second
parameter is missing, the initial contents of the new table are copied from
the previously active set. All subsequent CHARSET statements only modify
the new set.

At the beginning of a pass, AS automatically creates a single character set
with the name STANDARD with a one-to-one translation. If no CODEPAGE
instructions are used, all settings made via CHARSET refer to this table.

3.1.14 ENUM, NEXTENUM, and ENUMCONF

valid for: all processors

Similar to the same-named instruction known from C, ENUM is used to define
enumeration types, i.e. a sequence of integer constants that are assigned
sequential values starting at 0. The parameters are the names of the symbols,
like in the following example:

ENUM SymA,SymB, SymC

This instruction will assign the values 0, 1, and 2 to the symbols SymA,
SymB, and SymC.

If you want to split an enumeration over more than one line, use NEXTENUM
instead of ENUM for the second and all following lines. The internal counter
that assigns sequential values to alls symbols will then not be reset to zero,
like in the following case:

3.1. DEFINITIONS 81

ENUM January=1,February,March,April,,May, June
NEXTENUM July,August,September,October
NEXTENUM November,December

This example also demonstrates that it is possible to assign explicit values
to individual symbols. The internal counter will be updated accordingly if
this feature is used.

A definition of a symbol with ENUM is equal to a definition with EQU, i.e. it
is not possible to assign a new value to a symbol that already exists.

The ENUMCONF statement allows to influence the behaviour of ENUM. ENUMCONF
accepts one or two arguments. The first argument is always the value the
internal counter is incremented for every symbol in an enumeration. For
instance, the statement

ENUMCONF 2

has the effect that symbols get the values 0,2,4,6... instead of 0,1,2,3...

The second (optional) argument of ENUMCONF rules which address space the
defined symbols are assigned to. By default, symbols defined by ENUM are
typeless. For instance, the statement

ENUMCONF 1,CODE

defines that they should be assigned to the instruction address space. The
names of the address spaces are the same as for the SEGMENT instruction
(3.2.16|), with the addition of NOTHING to generate typeless symbols again.

3.1.15 PUSHYV and POPV

valid for: all processors

PUSHV and POPV allow to temporarily save the value of a symbol (that is
not macro-local) and to restore it at a later point of time. The storage is
done on stacks, i.e. Last-In-First-Out memory structures. A stack has a
name that has to fulfill the general rules for symbol names and it exists as
long as it contains at least one element: a stack that did not exist before is
automatically created upon PUSHV, and a stack becoming empty upon a POPV

82 CHAPTER 3. PSEUDO INSTRUCTIONS

is deleted automatically. The name of the stack that shall be used to save or
restore symbols is the first parameter of PUSH resp. POPV, followed by a list
of symbols as further parameters. All symbols referenced in the list already
have to exist, it is therefore not possible to implicitly define symbols with a
POPV instruction.

Stacks are a global resource, i.e. their names are not local to sections.

It is important to note that symbol lists are always processed from left to
right. Someone who wants to pop several variables from a stack with a POPV
therefore has to use the exact reverse order used in the corresponding PUSHV!

The name of the stack may be left blank, like this:

pushv ,varl,var2,var3

popv ,var3,var2,varl

AS will then use a predefined internal default stack.

AS checks at the end of a pass if there are stacks that are not empty and
issues their names together with their ”filling level”. This allows to find out
if there are any unpaired PUSHVs or POPVs. However, it is in no case possible
to save values in a stack beyond the end of a pass: all stacks are cleared at
the beginning of a pass!

3.2 Code Modification

3.2.1 ORG

valid for: all processors

ORG allows to load the internal address counter (of the assembler) with a new
value. The value range depends on the currently selected segment and on the
processor type (table . The lower bound is always zero, and the upper
bound is the given value minus 1.

CAUTION: If the PHASE instruction is also used, one has to keep in mind
that the argument of ORG always is the load address of the code. Expressions

3.2. CODE MODIFICATION

83

using the $ or symbol to refer to the current program counter however deliver
the execution address of the code and do not yield the desired result when
used as argument for ORG. The RORG statement ([3.2.2]) should be used in such

cases.

Target CODE | DATA I- X- Y- BIT- I0 | REG | ROM- | EE-
DATA | DATA | DATA | DATA DATA | DATA

68xxx/ 4G — — — — — — — — _
MCF
DSP56000 | 64K/ — — | 64K/ | 64K/ | — — — — —
DSP56300 16M 16M | 16M
PowerPC 4G — — — — — _ — — —
PALM 64K — — — — — 16 — — —
M*Core 4G — — — — . . _ - -
6800,6301, 64K — — — — — _ - - _
6811
6805/ 8K/ — — — — — N — —
HCO08 64K — — — — — — _ - -
6809, 64K — — — — - — - _ —
6309,
052001
68HC12, 64K — — — — — — — _ —
68HC12X,
XGATE
S127 16M — — — — — _ - _ —
68HC16 1M — — — — — — _ - —_
68RS08 16K — — — — — — _ - —
H8/300 64K — — — — — — _ _ -
H8/300H 16M
H8/500 64K — — — — — — _ - _
(Min)
H8/500 16M — — — — — - _ - _
(Max)
SH7000/ 4G — — — — — — — — —
7600/7700
HD614023 2K 160 — — — — 16 — — _
HD614043 4K 256 — — — — 16 — _— _
HD614081 8K 512 — — — — 16 _ _ -
HD641016 16M — — — — — — _ - —

84 CHAPTER 3. PSEUDO INSTRUCTIONS
Target CODE | DATA I- X- Y- BIT- I0 | REG | ROM- | EE-
DATA | DATA | DATA | DATA DATA | DATA
6502, 64K — — — — — — — — —
MELPS-
740
HUC6280 2M — — — — — — — — —
65816, 16M — — — — — — — — —
MELPS-
7700
PPS-4 4K 4K — — — — 16 — — —
MELPS- 8K 416 — — — — — — — —
4500
M16 4G — — — — — — — — —
M16C 1M — — — — — — — — —
PDP-11 64K — — — — — — — — —
256K — — — — — — — — —
AMLO o o o o o o o o o
WD16 64K — — — — — — — — —
4004 4K 256 — — — — — — — —
8008 16K 8 — — — — — — — —
Mcs-48, | 1/2/4/ | — | 256 | 256% | — — | — | =] — —
MCS-41 6/8KS
MCS-51 64K | 256 | 256" | 64K | — | 256 | — | — | — —
80C390 6M | 256 | 256" | 16M | — [256 | — | — | — -
MCS-251 16M — — — — — 512 — — —
MCS-96 64K — — — — — — — — —
196(N)/ 16M
296
8080, 64K — — — — — 256 | — — —
8085
80x86, 64K 64K — 64K — — 64K | — — —
V20..55
68xx0 4G — — — — — — — — —
8X30x 8K — — — — — — — — —
2650 32K — — — — — — — — —
XA 16M | 16M | — — — — 2K | — | — —
AVR 128KS% [32K6 | — — — — 64 | — | — | 8K
20XXX 4G — — — — — — — — —
80C166, 256K — — — — — — — — —

3.2. CODE MODIFICATION 85

Target CODE | DATA I- X- Y- BIT- I0 | REG | ROM- | EE-
DATA | DATA | DATA | DATA DATA | DATA

80C167 16M
GBZ80 64K — — — — — — — — —
780, 64K — — — — — 256 — — —
7180, 512K? 256 —
7380 4G 4G
78 64K 256 — — — — — — — —
eZ8 64K 256 — 64K — — — — — —
78001, &M — — — — — 64K | — — —
78003
78002, 64K — — — — — 64K | — — —
73004
KCPSM 256 256 — — — — — — — —
KCPSM3 256 64 — — — — 256 | — — —
Mico8 4096 256 — — — — 256 | — — —
TLCS- 16M — — — — — — — — —
900(L)
TLCS-90 64K — — — — — — — — —
TLCS- 64K — — — — — — — — —
870(/C)
TLCS-47 64K 1K — — — — 16 — — —
TLCS- 16M — — — — — — — — —
9000
TC9331 320 — — — — — — — — —
PIC 2K 32 — — — — — — — —
16C5x
PIC 2K 32 — — — — — — — —
16C5x
PIC
16064, 8K 512 | — — — — | — | — | — | 256"
16C86
PIC 64K 256 — — — — — — — —
17C42
SX20 2K 256 — — — — — — — —
ST6 4K 256 — — — — — — — —
ST7 64K — — — — — — — — —
STMS 16M — — — — — — — — —
ST9 64K 64K — — — — — 256 — —

86 CHAPTER 3. PSEUDO INSTRUCTIONS

Target CODE | DATA I- X- Y- BIT- I0 | REG | ROM- | EE-
DATA | DATA | DATA | DATA DATA | DATA

6804 4K 256 — — — — — — - —
32010 4K 144 — — — — 8 - — —
32015 4K 256 8
320C2x 64K 64K | — — — — 16 — — —
320C3x 16M — — — — — _ _ _ _
320C40 4G — — — — — — _ - —
320C44 32M — — — — — — — - _
320C5x/ 64K 64K — — — — | 64K | — _ —
320C20x/
320C54x
T™MS 64K — — — — — — _ — -
9900
TMS 64K — — — — — — _ - _
70Cxx
370xxx 64K — — — — - — — J— —
MSP430 64K — — — — — — _ - —
TMS1000 1K 64 — — — — — _ - _
TMS1200
TMS1100 2K 128 — — — — — _ - _
TMS1300
IMP-16 64K — — — — — 128 | — — 7
IPC-16 16K — — — — — _ _ - _
SC/MP 64K — — — — — — _ - _
807x 64K — — — — — _ _ - _
COP4 512 — — — — - — _ - —
COPS8 8K 256 — — — — - — — —
SC144xx 256 — — — — — S — J— _
NS16008/ 16M — — — — — - — _ -
NS32008/
NS08032/
NS16032/
NS32016/
NS32032/
NS32CC16
NS32332/ 4G — — — — — — _ — —

3.2. CODE MODIFICATION 87

Target CODE | DATA I- X- Y- BIT- I0 | REG | ROM- | EE-
DATA | DATA | DATA | DATA DATA | DATA

NS32532
ACE 4K* — — — — — — | — | — —
CP-3F/ 16K 48 — — — — 8
M380/
LP8000
F3850 64K 64 — — — — 256 | — — —
F8 4K 64 — — — — 256 | — — —
uPD 64K — — — — — — — — —
78(C)xx
7566 1K 64 — — — — — — — —
7508 4K 256 — — — — 16 — — —
75K0 16K 4K — — — — — — — —
78KO0 64K — — — — — — — — —
78K2 1M — — — — — — — — —
78K3 64K — — — — — — — — —
78K4 16M° — — — — — — | — — —
7720 512 128 — — — — — — 512 —
7725 2K 256 — — — — — — | 1024 —
77230 8K — — 512 512 — — — 1K —
70616 4G — — — — — 16M | — — —
5308XX 4G — — — — — — — — —
F2MCSL 64K — — — — — — — — —
F2MC16L 16M — — — — — — — — —
MSM5840 2K 128 — — — — — — — —
MSM5842 768 32 — — — — — — — —
MSM58421 1.5K 40 — — — — — — — —
MSM58422
MSM5847 1.5K 96 — — — — — — — —
MSM5054 1K 62 — — — — — — — —
MSM5055 1.75K 96 — — — — — — — —
MSM5056 1.75K 90 — — — — — — — —
MSM6051 2.5K 119 — — — — — — — —
MN1610 64K — — — — — 64K | — — —
MN1613 256K — — — — — 64K | — — —
PMCxxx/ 1.. 64.. — — — — 32.. — — —

88 CHAPTER 3. PSEUDO INSTRUCTIONS
Target CODE | DATA I- X- Y- BIT- I0 | REG | ROM- | EE-
DATA | DATA | DATA | DATA DATA | DATA

PMSxxx/ | 4K? | 256° 1287

PFSxxx

180x 64K — — — — — 8 — — —
XS1 4G — — — — — — | — — —
1750 64K — — — — — — — — —
KENBAK 256 — — — — — — — — —
CP1600 64K — — — — — — — — —
NANO 2K — — — — — — — — —
IM6100 4K — — — — — — — — —
IM6120 32K — — — — — — — — —
RX... 4G — — — — — — — — —
SC61860 64K — — — — — — — — —
SC62015 1M — — — — — — — — —

! Initial value 80h.
As the 8051 does not have any RAM beyond 80h, this value has to be
adapted with ORG for the 8051 as target processor!

2 As the Z180 still can address only 64K logically, the whole

address space can only be reached via PHASE instructions!

3 initial value 400h.

initial value 800h resp. 0C00Oh

area for program code is limited to 1 MByte

size depends on target processor

size and availibility depend on target processor

QY oo N O Of

only on variants supporting the MOVX instruction

device dependant

T

Y model dependent

Table 3.1: Address Ranges for ORG

In case that different variations in a processor family have address spaces of
different size, the maximum range is listed for each.

ORG is mostly needed to give the code a new starting address or to put
different, non-continuous code parts into one source file. In case there is no
explicit other value listet in a table entry, the initial address for this segment
(i.e. the start address used without ORG) is 0.

3.2. CODE MODIFICATION 89

3.2.2 RORG

valid for: all processors

RORG modifies the program counter just like ORG, however it does not expect
an absolute address as argument. Instead, it expects a relative value (posi-
tive or negative) that is added to the current program counter. A possible
application of this statement is the reservation of a certain amount of ad-
dress space, or the use in code parts that are included multiple times (e.g.
via macros or includes) and that shall be position-independent. Another ap-
plication is the use in code that has an execution address different from the
load address (i.e. the PHASE statement is used). There is no symbol to refer
to the current load address, but it can be referred to indirectly via the RORG
statement.

3.2.3 CPU

valid for: all processors

This command rules for which processor the further code shall be generated.
Instructions of other processor families are not accessible afterwards and will
produce error messages!

The processors can roughly be distinguished in families, inside the families
different types additionally serve for a detailed distinction:

a) 63008 — 63000 — 63010 — 63012 —
MCF5202 — MCF5204 — MCF5206 — MCF5208—
MCF52274 — MCF52277 — MCF5307 — MCF5329 —
MCF5373 — MCF5407 — MCF5470 — MCF5471 —
MCF5472 — MCF5473 — MCF5474 — MCF5475 —
MCF51QM —
68332 — 68340 — 68360 —
68020 — 68030 — 68040

The differences in this family are additional instructions and addressing
modes (starting from the 68020). A small exception is the step to the 68030
that misses two instructions: CALLM and RTM. The three representatives of the

90 CHAPTER 3. PSEUDO INSTRUCTIONS

683xx family have the same processor core (a slightly reduced 68020 CPU),
however completely different peripherals. MCFbxxx represents various Cold-
Fire variants from Motorola/Freescale/NXP, RISC processors downwardly
binary compatible to the 680x0. For the 68040, additional control registers
(reachable via MOVEC) and instructions for control of the on-chip MMU and
caches were added.

b) 56000 — 56002 — 56300

While the 56002 only adds instructions for incrementing and decrementing
the accumulators, the 56300 core is almost a new processor: all address spaces
are enlarged from 64K words to 16M and the number of instructions almost
has been doubled.

c) PPC403 — MPPC403 — MPC505 — MPC601 — MPC821
— RS6000

The PPC403 is a reduced version of the PowerPC line without a floating
point unit, which is why all floating point instructions are disabled for him;
in turn, some microcontroller-specific instructions have been added which
are unique in this family. The GC variant of the PPC403 incorporates an
additional MMU and has therefore some additional instructions for its con-
trol. The MPC505 (a microcontroller variant without a FPU) only differ in
its peripheral registers from the 601 as long as I do not know it better - [82]
is a bit reluctant in this respect... The RS6000 line knows a few instructions
more (that are emulated on many 601-based systems), IBM additionally uses
different mnemonics for their pure workstation processors, as a reminiscence
of 370 mainframes...

d) IBM5100, IBM5110, IBM5120
These three types currently all reference to the same (PALM) prozessor core.

e) MCORE

f) XGATE

3.2. CODE MODIFICATION 91

g) 6800 — 6801 — 6301 — 6811

While the 6801 only offers a few additional instructions (and the 6301 even
a few more), the 6811 provides a second index register and much more in-
structions.

h) 6809,/6309 and 6805/68HC(S)08

These processors are partially source-code compatible to the other 68xx pro-
cessors, but they have a different binary code format and a significantly
reduced (6805) resp. enhanced (6809) instruction set. The 6309 is a CMOS
version of the 6809 which is officially only compatible to the 6809, but inof-
ficially offers more registers and a lot of new instructions (see [56]).

i) 68HC12 — 68HC12X

The 12X core offers a couple of new instructions, and existing instructions
were were enriched with new addressing modes.

i) S912ZVC19FOMKH, S912ZVC19FOMLF,
S912ZVCA19FOMKH, S912ZVCA19FOMLF,
S912ZVCA19FOWKH, S912ZVH128F2CLQ,
S912ZVH128F2CLL, S912ZVH64F2CLQ,
S912ZVHY64F1CLQ, S912ZVHY32F1CLQ,
S912ZVHY64F1CLL, S912ZVHY32F1CLL,
S912ZVHL64F1CLQ, S912ZVHL32F1CLQ,
S912ZVHL64F1CLL, S912ZVHL32F1CLL,
S912ZVFP64F1CLQ, S912ZVFP64F1CLL,
S912ZVH128F2VLQ, S912ZVH128F2VLL,
S912ZVH64F2VLQ, S912ZVHY64F1VLQ,
S912ZVHY32F1VLQ, S912ZVHY64F1VL,
S912ZVHY32F1VLL, S912ZVHL64F1VLQ

All variants contain the same processor core and the same instruction set,
only the on-chip peripherals and the amount of built-in memory (RAM,
Flash-ROM, EEPROM) vary from device to device.

92 CHAPTER 3. PSEUDO INSTRUCTIONS

k) 68HC16
1) 052001

This chip is an own creation of Konami and similar to the Motorola 6809
in architecture an instruction set. However, it is not binary compatible and
does not provide all instructions and addressing modes of its 'role model’.

m) HD6413308 — HD6413309

These both names represent the 300 and 300H variants of the H8 family;
the H version owns a larger address space (16 Mbytes instead of 64 Kbytes),
double-width registers (32 bits), and knows a few more instructions and
addressing modes. It is still binary upward compatible.

n) HD6475328 — HD6475348 — HD6475368 — HD6475388

These processors all share the same CPU core; the different types are only
needed to include the correct subset of registers in the file REG53X. INC.

o) SH7000 — SH7600 — SH7700

The processor core of the 7600 offers a few more instructions that close gaps
in the 7000’s instruction set (delayed conditional and relative and indirect
jumps, multiplications with 32-bit operands and multiply /add instructions).
The 7700 series (also known as SH3) furthermore offers a second register
bank, better shift instructions, and instructions to control the cache.

p)HD614023 — HD614043 — HD614081

These three variants of the HMCS400 series differ by the size of the internal
ROM and RAM.

q) HD641016

This is currently the only target with H16 core.

3.2. CODE MODIFICATION 93

r) 6502 — 65(S)C02
— 65CE02 / W65C02S / 65C19 / MELPS740 / HUC6280 /
6502UNDOC

The CMOS version defines some additional instructions, as well as a number
of some instruction/addressing mode combinations were added which were
not possible on the 6502. The W65C02S adds two opcodes to the 65C02
instruction set to give more fine-grained control over how to stop the CPU
for low power modes. The 65S5C02 lacks the bit manipulation instructions of
the 65C02. The 65CE02 adds branch instructions with 16-bit displacement,
a 7Z register, a 16 bit stack pointer, a programmable base page, and a couple
of new instructions.

The 65C19 is not binary upward compatible to the original 6502! Some
addressing modes have been replaced by others. Furthermore, this processor
contains instruction set extensions that facilitate digital signal processing.

The Mitsubishi micro controllers in opposite expand the 6502 instruction
set primarily to bit operations and multiplication / division instructions.
Except for the unconditional jump and instructions to increment/decrement
the accumulator, the instruction extensions have nothing in common.

For the HuC 6280, the feature that sticks out most is the larger address
space of 2 MByte instead of 64 KBytes. This is achieved with a buil-tin
banking mechanism. Furthermore, it features some special instructions to
communicate with a video processor (this chip was used in video games) and
to copy memory areas.

The 6502UNDOC processor type enables access to the "undocumented” 6502
instructions, i.e. the operations that result from the usage of bit combinations
in the opcode that are not defined as instructions. The variants supported
by AS are listed in the appendix containing processor-specific hints.

s) MELPS7700, 65816

Apart from a ’16-bit-version’ of the 6502’s instruction set, these processors
both offer some instruction set extensions. These are however orthogonal as
they are oriented along their 8-bit predecessors (65C02 resp. MELPS-740).
Partially, different mnemonics are used for the same operations.

94 CHAPTER 3. PSEUDO INSTRUCTIONS
t) PPS-4
1) MELPS4500
v) M16
w) M16C

x) PDP-11/03, PDP-11/04, PDP-11/05, PDP-11/10,
PDP-11/15, PDP-11/20, PDP-11/23, PDP-11/24,
PDP-11/34, PDP-11/35, PDP-11/40, PDP-11 /44,
PDP-11/45, PDP-11/50, MicroPDP-11/53,
PDP-11/55, PDP-11/60, PDP-11/70, MicroPDP-11/73,
MicroPDP-11/83, PDP-11/84, MicroPDP-11/93,
PDP-11/94, T-11

The various models of the PDP-11 series differ in instruction set (both in
built-in instructions as well as in available extensions) and the supported
address space (64, 256, or 4096 KBytes).

y) WD16

The WD16 uses the same processor as the LSI-11, however with different
microcode. As a consequence, register set and addressing modes are the
same as for a PDP-11, however the instruction set is slightly different and
instructions also available on the PDP-11 have different machine codes.

z) CP-3F, LP8000, M380

The chipset’s processor element was sold by AEG/Olympia, GI, and SGS-
Ates under the respective names. There are no differences in the instruction
set and address spaces.

aa) 4004 — 4040

3.2. CODE MODIFICATION 95

In comparison to its predecessor, the 4040 features about a dozen additional
machine instructions.

ab) 8008 — 8008NEW Intel redefined the mnemonics around
1975, the second variant reflects this new instruction set. A simul-
taneous support of both sets was not possible due to mnemonic
conflicts.

ac) 8021, 8022,
8401, 8411, 8421, 8461,
8039, (MSM)80C39, 8048, (MSM)80C4S, 8041, 8042, 80C382

For the ROM-less versions 8039 and 80C39, the commands which are using
the BUS (port 0) are forbidden. The 8021 and 8022 are special versions with a
strongly shrinked instruction set, for which the 8022 has two A /D- converters
and the necessary control-commands. The instruction set of the MAB8401
to 8461 (designed by Philips) is somewhere in between the 8021/8022 and a
"complete” MC-48 instruction set. On the other hand, they provide serial
ports and up to 8 KBytes of program memory.

It is possible to transfer the CMOS-versions with the IDL resp. HALT com-
mand into a stop mode with lower current consumption. The 8041 and 8042
have some additional instructions for controlling the bus interface, but in
turn a few other commands were omitted. The code address space of 8041,
8042, 84x1, 8021, and 8022 is not externally extendable, and so AS lim-
its the code segment of these processors to the size of the internal ROM.
The (SAB)80C382 is a variant especially designed by Siemens for usage in
telephones. It also knows a HALT instruction, plus ist supports indirect ad-
dressing for DIJNZ and DEC. In turn, several instructions of the 'generic’ 8048
were left out. The OKI variants (MSM...) also feature indirect addressing
for DIJNZ and DEC, plus enhanced control of power-down modes, plus the full
basic MCS-48 instrucion set.

ad) 87C750 — 8051, 8052, 80C320, 80C501, 80C502,
80C504, 80515, and 80517
— 80C390
— 80C251

96 CHAPTER 3. PSEUDO INSTRUCTIONS

The 87C750 can only access a maximum of 2 Kbytes program memory which
is why it lacks the LCALL and LJMP instructions. AS does not make any
distinction among the processors in the middle, instead it only stores the
different names in the MOMCPU variable (see below), which allows to query the
setting with IF instructions. An exception is the 80C504 that has a mask flaw
in its current versions. This flaw shows up when an AJMP or ACALL instruction
starts at the second last address of a 2K page. AS will automatically use
long instructions or issues an error message in such situations. The 80C251
in contrast represents a drastic progress in the the direction 16/32 bits, larger
address spaces, and a more orthogonal instruction set. One might call the
80C390 the ’small solution’: Dallas Semiconductor modified instruction set
and architecture only as far as it was necessary for the 16 Mbytes large
address spaces.

ae) 8096 — 80196 — 80196N — 80296

Apart from a different set of SFRs (which however strongly vary from version
to version), the 80196 knows several new instructions and supports a 'win-
dowing’ mechanism to access the larger internal RAM. The 80196N family
extends the address space to 16 Mbytes and introduces a set of instructions
to access addresses beyond 64Kbytes. The 80296 extends the CPU core by
instructions for signal processing and a second windowing register, however
removes the Peripheral Transaction Server (PTS) and therefore looses again
two machine instructions.

af) 8080 — V30EMU — 8085 — 8085UNDOC

The 8085 knows the additional commands RIM and SIM for controlling the
interrupt mask and the two I/O-pins. The type 8085UNDOC enables addi-
tional instructions that are not documented by Intel. These instructions are

documented in section [4.23]

V30EMU as target behaves like an 8080, with the addition of the instructions
RETEM and CALLN. These allow to end or interrupt the 8080 emulation on
a V20/V30/V40/V50.

3.2. CODE MODIFICATION 97

ag) 8088,8086

— 80188.,80186

— V20,V30,V40,V50
— V33,V5H3

— V25,V35

— Vb5

— V555C

— V55PI

Processors listed in the same line feature an identical CPU core and therefore
identical instruction set. Going down the lines, new instructions are added,
with the NEC CPUs going different 'branches’, coming from the "V20 basic
instruction set’.

ah) 80960
ai) 8X300 — 8X305

The 8X305 features a couple of additional registers that miss on the 8X300.
Additionally, it can do new operations with these registers (like direct writing
of 8 bit values to peripheral addresses).

aj) XAG1, XAG2, XAG3

These processors only differ in the size of their internal ROM which is defined
in STDDEFXA.INC.

ak) AT90S1200, AT90S2313, AT90S2323, AT9I0S233,
AT90S2343, AT90S4414, AT90S4433, AT9I0S4434,

AT90S8515, AT90C8534, AT90S8535,

ATTINY4, ATTINY5, ATTINY9,

ATTINY10, ATTINY11, ATTINY12, ATTINY13, ATTINY13A,
ATTINY15, ATTINY20, ATTINY24(A), ATTINY?25,
ATTINY?26, ATTINY?28, ATTINY40, ATTINY44(A),
ATTINY45, ATTINY48, ATTINY84(A), ATTINYS5,
ATTINYS7, ATTINYSS, ATTINY102, ATTINY104,

98 CHAPTER 3. PSEUDO INSTRUCTIONS

ATTINY167, ATTINY261, ATTINY261A, ATTINY43U,
ATTINY441, ATTINY461, ATTINY461A, ATTINYS28,
ATTINYS841, ATTINYS61, ATTINY861A, ATTINY1634,
ATTINY2313, ATTINY2313A, ATTINY4313, ATMEGAA4S,
ATMEGAS, ATMEGA®515, ATMEGAS8535, ATMEGASS,
ATMEGASU2, ATMEGA16U2, ATMEGA32U2,
ATMEGA16U4, ATMEGA32U4, ATMEGA32U6, AT90USB646,
AT90USB647, AT90USB1286, AT90USB1287, AT43USB355,
ATMEGA16, ATMEGA161, ATMEGA162, ATMEGA163,
ATMEGA164, ATMEGA165, ATMEGA168, ATMEGA169,
ATMEGA32, ATMEGA323, ATMEGA324, ATMEGA325,
ATMEGA3250, ATMEGA328, ATMEGA329, ATMEGA3290,
ATMEGA406, ATMEGA64, ATMEGA640, ATMEGAG44,
ATMEGAG644RFR2, ATMEGAG645, ATMEGA6450,
ATMEGA649, ATMEGA6490, ATMEGA103, ATMEGA128,
ATMEGA1280, ATMEGA1281, ATMEGA1284,
ATMEGA1284RFR2, ATMEGA2560, ATMEGA2561

The various AVR chip variants mainly differ in the amount of on-chip memory
(flash, SRAM, EEPROM) an the set of built-in peripherals (GPIO, timers,
UART, A/D converter...). Compared to the AT90... predecessors, the AT-
mega chip also provide additional instructions, while the ATtinys do not
support the multiplication instructions.

al) AM29245 — AM29243 — AM29240 — AM29000

The further one moves to the right in this list, the fewer the instructions
become that have to be emulated in software. While e.g. the 29245 not
even owns a hardware multiplier, the two representors in the middle only
lack the floating point instructions. The 29000 serves as a "generic’ type that
understands all instructions in hardware.

am) 80C166 — 80C167,80C165,80C163

80C167 and 80C165/163 have an address space of 16 Mbytes instead of 256
Kbytes, and furthermore they know some additional instructions for extended
addressing modes and atomic instruction sequences. They are ’second gen-
eration’ processors and differ from each other only in the amount of on-chip
peripherals.

3.2. CODE MODIFICATION 99

an) LR35902/GBZ80 — Z80 — Z80UNDOC
— 7180 — Z380

While there are only a few additional instructions for the Z180, the Z380
owns 32-bit registers, a linear address space of 4 Gbytes, a couple of instruc-
tion set extensions that make the overall instruction set considerably more
orthogonal, and new addressing modes (referring to index register halves,
stack relative). These extensions partially already exist on the Z80 as un-
documented extensions and may be switched on via the ZSOUNDOC variant.
A list with the additional instructions can be found in the chapter with pro-
cessor specific hints.

The processor built into the Gameboy (official designation LR35092, com-
monly referred to as ”Gameboy Z80") is a mixture of an 8080 and Z80. It
lacks the IX/IY registers, the I/O address space, the second register bank
and a couple of 16 bit instructions.

a0) 78601, Z8603, z86C03, z86E03, Z86C06, ZIEE06,
786C08, Z86C21, Z86E21, Z86C30, Z86C31, Z86C32 ZI6C40
— 788C00, Z83C01

— e78, Z8F0113, Z8FO11A, Z8F0123, ZSFO12A,

78F0130, Z8F0131, Z8F0213, Z8F021A, Z8F0223, Z8F022A,
78F0230, Z8F0231, Z8F0411, Z8F0412, Z8F0413, Z8F041A,
Z8F0421, Z8F0422, Z8F0423, Z8F042A, Z8F0430, Z8F0431,
78F0811, Z8F0812, Z8F0813, Z8F0S1A, ZSF0821, Z8F0822,
78F0823, Z8F082A, Z8F0830, Z8F0831, Z8F0880, Z8F1232,
78F1233, Z8F1621, Z8F1622, Z8F1680, ZSF1681, Z8F1682,
78F2421, 7Z8F2422. 78F2480, Z8F3221, Z8F3222, Z8F3281,
78F3282, 78F4821, 7Z8F4822, 78F4823, Z8F6081, Z8F6082,
78F6421, Z8F6422, Z8F6423, Z8F6481, ZSF6482

The variants with Z8 core only differ in internal memory size and on-chip pe-
ripherals, i.e. the choice does not have an effect on the supported instruction
set. Super8 and eZ8 are substantially different, each with an instruction set
that was vastly extended (into different directions), and they are not fully
upward-compatible on source code level as well.

ap) Z8001, Z8002, Z8003, Z8004

100 CHAPTER 3. PSEUDO INSTRUCTIONS

The operation mode (segmented for Z8001 and Z8003, non-segmented for
78002 and Z8004) is selected via the processor type. There is currently no
further differentiation between Z8001/8002 and Z8003/8004.

aq) KCPSM

Both processor cores are not available as standalone components, they are
provided as logic cores for gate arrays made by Xilinx The -3 variant offers
a larger address space and some additional instructions. Note that it is not
binary upward-compatible!

ar) MICO8_05, MICO8_V3, MICO8_V31

Lattice unfortunately changed the machine instructions more than once, so
different targets became necessary to provide continued support for older
projects. The first variant is the one described in the 2005 manual, the two
other ones represent versions 3.0 resp. 3.1.

as) 96C141, 93C141

These two processors represent the two variations of the processor family:
TLCS-900 and TLCS-900L. The differences of these two variations will be
discussed in detail in section .33

at) 90C141
au) 87C00, 87C20, 87C40, 87C70

The processors of the TLCS-870 series have an identical CPU core, but dif-
ferent peripherals depending on the type. In part registers with the same
name are located at different addresses. The file STDDEF87 . INC uses, similar
to the MCS-51-family, the distinction possible by different types to provide
the correct symbol set automatically. av) TLCS-870/C Currently, only the
processor core of the TLCS-870/C family is implemented.

aw) 47C00 — 470C00 — 470AC00

3.2. CODE MODIFICATION 101

These three variations of the TLCS-47-family have on-chip RAM and ROM
of different size, which leads to several bank switching instructions being
added or suppressed.

ax) 970241
ay) TC9331
az) 16C54 — 16C55 — 16C56 — 16C5H7

These processors differ by the available code area, i.e. by the address limit
after which AS reports overruns.

ba) 16C84, 16C64

Analog to the MCS-51 family, no distinction is made in the code gen-
erator, the different numbers only serve to include the correct SFRs in
STDDEF18. INC.

bb) 17C42
be) SX20, SX28

The SX20 uses a smaller housing and lacks port C.

bd) ST6200, ST6201, ST6203, ST6208, ST6209,
ST6210, ST6215, ST6218, ST6220, ST6225,
ST6228, ST6230, ST6232, ST6235, ST6240,
ST6242, ST6245, ST6246, ST6252, ST6253,
ST6255, ST6260, ST6262, ST6263, ST6265,
ST6280, ST6285

The various ST6 derivates differ in the amount of on-chip peripherals and
built-in memory.

102 CHAPTER 3. PSEUDO INSTRUCTIONS

be) ST7

ST72251G1, ST72251G2, ST72311J2, ST72311J4,
ST72321BR6, ST72321BR7, ST72321BR9, ST7232554,
ST7232556, ST72325J7, ST72325R9, ST72324J6,
ST72324K6, ST72324J4, ST72324K4, ST72324J2,
ST72324JK21, ST7232554, ST72325J7, ST72325R9,
ST72521BR6, ST72521BM9, ST7232AK1, ST7232AK2,
STT7232AJ1, ST7232AJ2, ST72361AR4, ST72361AR6,
ST72361AR7, ST72361AR9, STTFOXK1, STTFOXK2,
ST7TLITES2Y0, ST7LITES5Y0, ST7LITE02YO,
ST7LITE05Y0, STTLITE09YO0

ST7LITE10F1, ST7TLITE15F1, STTLITE19F1,
STTLITEL0F0, STTLITE15F0, STTLITE15F1,
ST7LITE19F0, STTLITE19F1,

ST7TLITE20F2, STTLITE25F2, STTLITE29F2,
ST7LITE30F2, STTLITE35F2, STTLITE39F2,
STTLITE49K?2,

STTMC1K2, STTMC1K4, STTMC2N6, STTMC254,
STTMC2S6, STTMC2S7, STTMC2S9, STTMC2R6,
STTMC2R7, STTMC2R9, STTMC2M9,

STMS

STM8S001J3, STM8S003F3, STM8S003K3, STM8S005C6,
STM8S005K6, STM8S007C8, STM8S103F2, STM8S103F3,
STM8S103K3, STM8S105C4, STM&8S105C6, STM8S105K4,
STM8S105K6, STM8S10554, STM8S10556, STM8S207TMB,
STM8S207MS8, STM8S207RB, STM8S207R8, STMS8S207R6,
STM8S207CB, STM8S207C8, STM85207C6, STM8S5207SB,
STM8S207S8, STM8S20756, STM8S207K8, STM8S207K6,
STM8S208MB, STM8S208RB, STM&8S208R8, STM8S208R6,
STM8S208CB, STM8S5208C8, STM85208C6, STM8S208SB,
STM8S208S8, STM8S20856, STM8S903K3, STM8S903F3,
STM8L050J3, STM8L051F3, STMS8L052C6, STMSL052RS,
STM8L001J3, STM8L101F1, STM8L101F2, STM8L101G2,
STM8L101F3, STMS8L101G3, STM8L101K3, STM8L151C2,
STM8L151K2, STM8L151G2, STM8L151F2, STMS8L151C3,
STM8L151K3, STM8L151G3, STMSL151F3, STM8L151C4,
STMSL151C6, STMSL151K4, STMSL151K6, STMSL151G4,
STM8L151G6, STM8L152C4, STM8L152C6, STM8L152K4,

3.2. CODE MODIFICATION 103

STMS8L152K6, STMSL151R6, STM8L151CS, STMSL151MS,
STMSL151R8, STM8L152R6, STM8L152C8, STMSL152KS,
STMSL152M8, STMSL152R8, STMS8L162M8, STMSL162RS,
STM8AF6366, STM8AF6388, STM8AF6213, STM8AF6223,
STM8AF6226, STM8AF6246, STM8AF6248, STMSAF6266,
STMSAF6268, STM8AF6269, STMSAF6286, STMSAF6288,
STM8AF6289, STMSAF628A, STMSAF62A6, STMSAF62AS,
STMSAF62A9, STMS8AF62AA, STMS8AF5268, STMSAF5269,
STMSAF5286, STM8AF5288, STM8AF5289, STMSAF528A,
STMSAF52A6, STM8AF52A8, STM8AF52A9, STMS8AF52AA,
STMSAL3136, STMSAL3138, STMSAL3146, STMS8AL3148,
STMSAL3166, STMSAL3168, STMSAL3L46, STMSAL3LAS,
STMSAL3L66, STMSAL3L68, STMSAL3188, STMSAL3189,
STMSAL318A, STMSAL3LSS, STMSAL3L89, STMSAL3LSA,
STMSTL52F4, STMS8TL52G4, STM8TL53C4, STMSTL53F4,
STMSTL53G4

The STMS core extends the address space to 16 Mbytes and introduces a
couple of new instructions. Though many instructions have the same machine
code as for ST7, it is not binary upward compatible.

bf) ST9020, ST9030, ST9040, STI050

These 4 names represent the four ”sub-families” of the ST9 family, which
only differ in their on-chip peripherals. Their processor cores are identical,
which is why this distinction is again only used in the include file containing
the peripheral addresses.

bg) 6304
b